分区表和分桶表
文章目录
分区表
分区表实际上就是对应一个 HDFS 文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。
Hive 中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过 WHERE 子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多,所以我们需要把常常用在 WHERE 语句中的字段指定为表的分区字段。
这样查询时只要扫描需要的文件即可
语法
create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (day string)
row format delimited fields terminated by '\t';
注意:分区字段不能是表中已经存在的数据,可以将分区字段看作表的伪列。
加载数据
load data local inpath '/opt/text.txt' into table dept_partition partition(field=xxxx);
注意:分区表加载数据时,必须指定分区
增加分区
增加单个
alter table dept_partition add partition(field=xxxx);
增加多个(无逗号
)
alter table dept_partition add partition(field=xxxx) partition(field=yyyy);
删除分区
删除单个
alter table dept_partition drop partition (field=xxxx);
删除多个(有逗号
)
alter table dept_partition drop partition (field=xxxx), partition(field=yyyy);
查看分区表有多少分区
show partitions dept_partition;
查看分区表结构
desc formatted dept_partition;
动态分区
关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不过,使用 Hive 的动态分区,需要进行相应的配置。
开启动态分区功能(默认 true,开启)
set hive.exec.dynamic.partition=true;
设置为非严格模式
动态分区的模式,默认 strict,表示必须指定至少一个分区为静态分区,nonstrict 模式表示允许所有的分区字段都可以使用动态分区。
set hive.exec.dynamic.partition.mode=nonstrict;
在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。默认 1000
set hive.exec.max.dynamic.partitions=1000;
在每个执行 MR 的节点上,最大可以创建多少个动态分区。
该参数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即 day 字段有365 个值,那么该参数就需要设置成大于 365,如果使用默认值 100,则会报错。
set hive.exec.max.dynamic.partitions.pernode=100;
整个 MR Job 中,最大可以创建多少个 HDFS 文件。默认 100000
set hive.exec.max.created.files=100000;
当有空分区生成时,是否抛出异常
一般不需要设置。默认 false
set hive.error.on.empty.partition=false;
分桶表
分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区。对于一张表或者分区,Hive 可以进一步组织成桶,也就是更为细粒度的数据范围划分。分桶是将数据集分解成更容易管理的若干部分的另一个技术。
分区针对的是数据的存储路径,分桶针对的是数据文件。
创建分桶表
create table stu_buck(
id int,
name string
)
clustered by(id) into 4 buckets
row format delimited fields terminated by '\t';
查看表结构
desc formatted stu_buck;
导入数据
load data inpath '/student.txt' into table stu_buck;
分桶规则
Hive 的分桶采用对分桶字段的值进行哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中
(1)reduce 的个数设置为-1,让 Job 自行决定需要用多少个 reduce 或者将 reduce 的个数设置为大于等于分桶表的桶数
(2)从 hdfs 中 load 数据到分桶表中,避免本地文件找不到问题
(3)不要使用本地模式
区别
分区表是指按照数据表的某列或某些列分为多个区,区从形式上可以理解为文件夹。
分桶是相对分区进行更细粒度的划分。分桶将整个数据内容按照某列属性值的hash值进行区分,如果按照name 属性分为3个桶,就是对name属性值的hash值对3取模,按照取模结果对数据分桶。如取模结果为0的数据记录存放到一个文件,取模为1的数据存放到一个文件,取模为2的数据存放到一个文件。
从表现形式形式上
分区表是一个目录,分桶表是文件。
从创建语句上
分区表使用partitioned by 子句指定,以指定字段为伪列,需要指定字段类型。
分桶表由clustered by 子句指定,指定字段为真实字段,需要指定桶的个数。
从数量上
分区表的分区个数可以增长,分桶表一旦指定,不能增长。
作用上
分区避免全表扫描,根据分区列查询指定目录提高查询速度
分桶保存分桶查询结果的分桶结构(数据已经按照分桶字段进行了hash散列)
分桶表数据进行抽样和join时可以提高MR程序效率