matplotlib常用subplot

这篇博客展示了如何使用Python的Matplotlib库创建2x2的子图,并在每个子图中绘制散点图。代码示例分别用不同颜色标记了不同数据集,设置了坐标轴限制,并在部分子图中禁用了边框。此外,还包含了一个极坐标散点图的例子。
摘要由CSDN通过智能技术生成

This is my favorite

import matplotlib.pyplot as plt
x = range(10)
y = range(10)
fig, ax = plt.subplots(nrows=2, ncols=2)

for row in ax:
    for col in row:
        col.plot(x, y)

plt.show()
fig= plt.figure(figsize=(12,10))
for index,(each,c) in enumerate(zip(df2['newrank2'].unique(),['g','y','r','m','b'])):
    
    ax = fig.add_subplot(3,2,index+1)
    
    ax.scatter(x=df2.query("newrank2== @each")['totalq'],y=df2.query("newrank2== @each")['totalsales'],color =c,alpha =0.9,edgecolors ='black',label=each)
    ax.legend()
    ax.set_xlabel('totalq')
    ax.set_ylabel('totalsales')
# ax.set_title(each)
    ax.set_ylim((0,1000))
    ax.set_xlim((0,80)) 
fig= plt.figure()
ax = plt.axes()
for each,c in zip(df2['newrank2'].unique(),['g','y','r','m','b']):
    
    ax.scatter(x=df2.query("newrank2== @each")['totalq'],y=df2.query("newrank2== @each")['totaldisc'],color =c,alpha =0.5,edgecolors ='black',label=each)
    ax.legend()
    ax.set_xlabel('totalq')
    ax.set_ylabel('totaldisc')
# ax.set_title(each)
    ax.set_ylim((0,1000))
    ax.set_xlim((0,80)) 
plt.subplot(221)

# equivalent but more general
ax1=plt.subplot(2, 2, 1)

# add a subplot with no frame
ax2=plt.subplot(222, frameon=False)

# add a polar subplot
plt.subplot(223, projection='polar')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值