SOMVFV

具有可变特征和视角的半监督在线学习算法( S O M V F V SOMVFV SOMVFV)

介绍:

对于特征或视角,随着时间可能会丢失一些特征或者视角(如多个摄像机从不同角度进行拍照,但是由于某台摄像机出现故障或者遮挡导致确实一部分视角或特征信息),传统学习机无法处理这种具有可变特征或视角的数据集。

MVL-IV 模型:
  • 提出不同视角由一个共享子空间生成,使得 MVL-IV 可以通过该子空间将其他视角的信息集成起来,从而估计出不完整的视角。
  • MVL-IV 使用样本矩阵的低秩假设来还原丢失的视角
  • 主要处理缺失视角的样本
OPID 模型:
  • OPID 考虑可变特征,而且具有处理大规模和频繁更新的数据集的能力,即使这些数据集是单视角的。
  • 将特征信息分为三类:消失、保留、新增

创新:

  • 提出处理半监督、大规模、频繁更新且可变特征和视角的数据集方法。
  • 具有更高的性能

S O M V F V SOMVFV SOMVFV 框架

  1. 通过时间顺序对样本进行处理

    随着时间,样本特征可能会发生变化,与上一时期相比,在特征和视角的信息方面,有些会在下一个时期消失,有些会保留,有些会在这个时期新增。假设我们知道第G时间段第j视角下的三种特征 X j ( v ) − g 、 X j ( s ) − g 、 X j ( a ) − g X_j^{(v)-g}、 X_j^{(s)-g}、X_j^{(a)-g} Xj(v)gXj(s)gXj(a)g , 但是我们无法知道(G+2)时间段纳西特征会消失,我们需要在(G+1)时间段训练分类器,去测试(G+2)时间的样本。

    对于存储器只能在一个时间段存储样本,所以我们尝试将前G时间段信息压缩到G+1时间段,通过优化目标函数,得到G时间段的最优参数, ω ~ j G \tilde{\omega}_j^G ω~jG ω ˙ j G \dot{\omega}_j^G ω˙jG ω ˉ j G \bar{\omega}_j^G ωˉjG

    对于将着些权重信息压缩到G+1时间段, x ~ j i G + 1 \tilde{x}_{ji}^{G+1} x~jiG+1,我们定义 z ~ j i G + 1 = ω ~ j G x ~ j i G + 1 T \tilde{z}_{ji}^{G+1}=\tilde{\omega}_j^G\tilde{x}_{ji}^{{G+1}^T} z~jiG+1=ω~jGx~jiG+1T作为 x ~ j i G + 1 \tilde{x}_{ji}^{G+1} x~jiG+1的新表示。对于 x ˙ j i G + 1 \dot{x}_{ji}^{G+1} x˙jiG+1,其在第 ( G + 1 ) (G+1) (G+1)个时间段中的新表示为 z ˙ j i G + 1 = ω ˙ j G x ˙ j i G + 1 T \dot{z}_{ji}^{G+1}=\dot{\omega}_j^G\dot{x}_{ji}^{{G+1}^T} z˙jiG+1=ω˙jGx˙jiG+1T。对于 x ˉ j i G + 1 \bar{x}_{ji}^{G+1} xˉjiG+1,由于在此时间段内,新增特征与之前的 G G G个时间段无关,因此 x ˉ j i G + 1 \bar{x}_{ji}^{G+1} xˉjiG+1在第 ( G + 1 ) (G+1) (G+1)个时间段内的新表示为 z ˉ j i G + 1 = [ z ˙ j i G + 1 , x ˉ j i G + 1 ] \bar{z}_{ji}^{G+1}=[\dot{z}_{ji}^{G+1},\bar{x}_{ji}^{G+1}] zˉjiG+1=[z˙jiG+1,xˉjiG+1] ω ~ j G + 1 \tilde{\omega}_j^{G+1} ω~jG+1 ω ˙ j G + 1 \dot{\omega}_j^{G+1} ω˙jG+1 ω ˉ j G + 1 \bar{\omega}_j^{G+1} ωˉjG+1的维度取决于这些特征的新表示。

    接着在G+1时间段,通过公式进行优化,得到最优参数

    x ~ j i g = [ x j i ( v ) − g , x j i ( s ) − g ] \tilde{x}_{ji}^g=\lbrack x_{ji}^{(v)-g}, x_{ji}^{(s)-g} \rbrack x~jig=[xji(v)g,xji(s)g] x ˙ j i g = [ x j i ( s ) − g ] \dot{x}_{ji}^g=\lbrack x_{ji}^{(s)-g} \rbrack x˙jig=[xji(s)g] x ˉ j i g = [ x j i ( s ) − g , x j i ( a ) − g ] \bar{x}_{ji}^g=\lbrack x_{ji}^{(s)-g}, x_{ji}^{(a)-g} \rbrack xˉjig=[xji(s)g,xji(a)g]

总结

对于具有可变特征和视角的半监督在线学习模型

  1. 首先我们知道第G时间段的有标签样本特征,通过训练我们可以获得最优三个参数,压缩信息到下一个时间
  2. 并不知道下一个时间段特征那些消失,只知道新增和存在特征,我们通过对上阶段得到的参数和G+1时间段样本特征进行结合,得到样本新的形式。

缺点:

  • 缺失比例高,精确度越差
  • 模型复杂,希望简化
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值