连续时间傅里叶变换

与卷积不同的是,我们考虑将信号分解为复指数的线性组合。
ϕ k ( t ) = e s k t , s k 为 复 数 \phi _{k}(t)=e^{s_{k}t} , sk为复数 ϕk(t)=eskt,sk

ϕ k [ n ] = z k n , z k 为 复 数 \phi _{k}[n]=z_{k}^{n}, zk为复数 ϕk[n]=zkn,zk

我们选择的输入,也就是基本构建模块,必须满足两个属性。一是系统响应可直接计算,或在某种程度上便于计算。第二是这种模块非常普遍,这样就可以用他们来构建很多种信号。复指数信号模块刚好满足这两种形式。

连续时间中,指数是纯虚数的情况

C − T : s k = j w k , ϕ k ( t ) = e j w k t C-T: s_{k}=jw_{k} , \phi_{k}(t)=e^{jw_{k}t} CT:sk=jwk,ϕk(t)=ejwkt

D − T : ∣ z k ∣ = 1 , ϕ k ( n ) = e j Ω k n D-T: \left | z_{k} \right |=1 , \phi_{k}(n)=e^{j\Omega_{k}n} DT:zk=1,ϕk(n)=ejΩkn
s k s_{k} sk为复数,则得到了Laplace变换, z k z_{k} zk为复数,则得到z变换。

一个叫做本征函数的东西,是构建这些模块的属性。
对于信号
ϕ k ( t ) = e j w k t \phi_{k}(t)=e^{jw_{k}t} ϕk(t)=ejwkt
这个论断是这样的,对于线性时不变系统而言,对这些响应其形式完全一致,只不过与复合因数相乘。这个复合因素取决于频率wk的大小。
e j w k t → H ( w k ) e j w k t e^{jw_{k}t} \rightarrow H(w_{k})e^{jw_{k}t} ejwktH(wk)ejwkt
本征函数指的是,一个系统的本征函数,或者一个数学表达式的本征函数,指的是如果你把这个函数放到系统中,在结果中他的形式不变,除了在振幅上会发生变化,振幅的变化就是本征值。

因为具有本征函数的属性,复指数作为构建模型,是特别方便的。也就是说你把他们放到系统中,输出结果形式不变,只是幅度上有变化。
我们希望复指数信号可以作为构建模块,通过线性组合表示多种信号。

我们首先看看周期信号的情况,最后结果是我们会用傅里叶级数来表示周期函数。 之后,使用傅里叶变换来表示非周期函数。

连续时间信号的傅里叶级数

傅里叶级数是周期性连续时间信号的一种表达。假设有一个周期性的信号,
X ( t ) = X ( t + T 0 ) , W 0 = 2 π / T 0 = 2 π f 0 X(t)=X(t+T_{0}), W_{0}=2\pi/T_{0}=2\pi f_{0} X(t)=X(t+T0),W0=2π/T0=2πf0
其中, W 0 W_{0} W0为基频。
确认一下,有一个复指数信号,与一般周期信号一样,有着完全一样的周期和基频。
e j w 0 t , T 0 = 2 π / w 0 e^{jw_{0}t}, T_{0}=2\pi /w_{0} ejw0t,T0=2π/w0
基本周期为 T 0 T_{0} T0
e j k w 0 t , T 0 = 2 π / k w 0 e^{jkw_{0}t}, T_{0}=2\pi /kw_{0} ejkw0t,T0=2π/kw0
基本周期为 T 0 / k T_{0}/k T0/k
傅里叶认为,如果我有一个很普通的周期信号,我可以把他表示为谐波相关复指数的线性组合。这就是傅里叶级数的定义。
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x(t)=\sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t} x(t)=k=+akejkw0t
接下来我们要确定两个问题,一是傅里叶级数的系数 a k a_{k} ak该如何求解计算,二是通过傅里叶级数这种形式,我们可以表达多少种类的信号。

如何求解傅里叶级数系数

运用傅里叶级数的复指数表达形式,我们会发现,在把一个周期信号分解为不同频率的组成成分时,会同时包含正频率和负频率,k的值在负数和正数之间变化。
复指数形式是傅里叶级数的一种表示。此外,也可用三角函数形式进行表示。利用欧拉公式进行展开即可。
e j k w 0 t = c o s ( k w 0 t ) + j s i n ( k w 0 t ) e^{jkw_{0}t}=cos (kw_{0}t)+j sin( kw_{0}t) ejkw0t=cos(kw0t)+jsin(kw0t)
代入得到:
x ( t ) = a 0 + 2 ∑ k = 1 ∞ A k c o s ( k w 0 t + θ k ) x(t)=a_{0}+2\sum_{k=1}^{\infty}A_{k}cos(kw_{0}t+\theta_{k}) x(t)=a0+2k=1Akcos(kw0t+θk)
里面一些值就是代入对应的值,这里就不展开写了。我们使用的形式一般都是复指数形式,为什么呢,因为这样我们表达正频率和负频率非常方便。
运用复指数形式,我们会发现,当我们使用傅里叶级数将一个周期信号分解成不同频率成分的线性组合时,会同时包含正频率和负频率。

接下来我们讲解下如何求解傅里叶级数的系数。
首先我们要简单过一遍代数知识。
∫ T 0 e j m w 0 t d t = T 0 , i f m = 0 ; 0 , i f m ≠ 0 \int _{T_{0}}{e^{jmw_{0}t}}dt=T_{0},if \quad m=0; 0, if \quad m \neq0 T0ejmw0tdt=T0,ifm=0;0,ifm=0
只需将 e j k w 0 t e^{jkw_{0}t} ejkw0t用欧拉公式展开便很容易得到上述表达式。

傅里叶级数系数正式求解

我们回到傅里叶级数表达式,
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x(t)=\sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t} x(t)=k=+akejkw0t
为了求解系数 a k a_{k} ak,我们将等式左右两边分别乘以 e − j n w 0 t e^{-jnw_{0}t} ejnw0t并在一个周期内进行积分,得到
∫ T 0 x ( t ) e − j n w 0 t d t = ∫ T 0 e j n w 0 t ∑ k = − ∞ ∞ a k e j k w 0 t d t = ∑ k = − ∞ ∞ a k ∫ T 0 e − j ( n − k ) w 0 t d t \int _{T_{0}}x(t)e^{-jnw_{0}t}dt=\int_{T_{0}} e^{jnw_{0}t}\sum_{k=-\infty}^{\infty}a_{k}e^{jkw_{0}t}dt=\sum_{k=-\infty}^{\infty}a_{k}\int_{T_{0}}e^{-j(n-k)w_{0}t}dt T0x(t)ejnw0tdt=T0ejnw0tk=akejkw0tdt=k=akT0ej(nk)w0tdt
利用前面我们学到的代数知识,我们可以得出的结论是:
i f k = n , T 0 i f k ≠ 0 , 0 if \quad k=n, T_{0}\quad if \quad k\neq0,0 ifk=n,T0ifk=0,0
n = k n=k n=k,则我们得到傅里叶系数的求解表达式( a n = a k a_{n}=a_{k} an=ak):
∫ T 0 x ( t ) e − j n w 0 t d t = a n T 0 \int _{T_{0}}x(t)e^{-jnw_{0}t}dt=a_{n}T_{0} T0x(t)ejnw0tdt=anT0
a n = 1 T 0 ∫ T 0 x ( t ) e − j n w 0 t d t a_{n}=\frac{1}{T_{0}}\int _{T_{0}}x(t)e^{-jnw_{0}t}dt an=T01T0x(t)ejnw0tdt
这样,我们就得到了傅里叶级数的综合方程。
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t x(t)=\sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t} x(t)=k=+akejkw0t
a k = 1 T 0 ∫ T 0 x ( t ) e − j k w 0 t d t a_{k}=\frac{1}{T_{0}}\int _{T_{0}}x(t)e^{-jkw_{0}t}dt ak=T01T0x(t)ejkw0tdt
在傅里叶级数与傅里叶变换的讨论过程种,有这样一个普遍的观念。即低频项表现了长期内的特性,而高频项则用来构建时域种的急剧转变。
解决完了问题一之后,我们现在回到第二个问题,傅里叶级数究竟能表达多少种类的信号?也就是在什么情况下傅里叶级数会收敛
假设傅里叶级数项为N(部分和),傅里叶级数与原始信号之间差称之为误差项,
这里直接给出结论,当 x ( t ) x(t) x(t)平方可积时,傅里叶级数会收敛。更严格的说是狄里赫利条件,说的是x(t)如果绝对可积,不是平方可积而是绝对可积,即
∫ T 0 ∣ x ( t ) ∣ d t < ∞ \int _{T_{0}} |x(t)|dt < \infty T0x(t)dt<
且,表现良好(well behaved),则随着傅里叶级数项的增加,傅里叶级数会越来越接近于原始信号,除了在不连续点处误差会趋近于0.这个表现良好指的是:任何周期内,最大值与最小值的个数是有限的,同时不连续点的个数也是有限的
结论:
(1)在平方可积的前提下,不是部分和在每一个点都有正确值,而是误差种的能量趋向于0.
(2)在狄里赫利条件下,认为实际上信号在除了不连续点之外的每个时间点上都有正确的值。

讲到这里,差不多讲清楚了傅里叶级数的概念。傅里叶级数是用于处理周期信号的,这里引申一下,如果对于非周期信号,该如何处理。我们可以将一个非周期信号进行等间隔复制,构建出基于原始非周期信号的周期信号,周期为T。当新的周期T趋近于无穷大时,则又回到了原始的非周期信号。这个时候的傅里叶级数也就变成了傅里叶变换。

参考资料

1.《信号与系统》 奥本海姆版

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值