步骤:
1.从初始数据集D={x1,x2,… xn}中选取一个点作为第一个聚类中心z1
2.计算数据集D中其他点到z1的距离集合d1i={d12,d13,…d1n},选择其中最大的max{d1i}对应的点作为第二个聚类中心z2.
3.计算D中各点到z1,z2的举例d1i,d2i,找到其中每对的最小值的min{d1i,d2i},(注,min{d1i,d2i}是一个数据集,是{min{d11.d21},min{d12,d22},…min{d1n,d2n}}的缩写)。
4.计算min{d1i,d2i}的最大值–max{min{d1i,d2i}},(注max{min{d1i,d2i}}是一个值,min{d1i,d2i}中的最大值)
5.若存在对应的点xi可以使max{min{d1i,d2i}}>m*||z1-z2||,(其中m是其中 m 为最大最小距离算法中的检验参数,通常取 0<m<1,||z1-z2||为z1到z2的距离),则对应的xi使第三个聚类中心z3。否则结束聚类中心的选取。
6.如第5步,一次类推。
7,若已经存在k聚类中心,判断是否存在xi是的max{min{d1i,d2i,…dki}}>m*||z1-z2||,若上式子成立选择xi为第k+1个聚类中心,否则结束。
(注max{min{d1i,d2i,…dki}}>m*||z1-z2||次不等式在有些书中为max{min{d1i,d2i,…dki}}>m*[average(||z1-z2||,||z2-z3||,|||z3-z4|,…,||z(k-1)-zk||)])
最大最小距离算法
最新推荐文章于 2024-06-21 17:30:00 发布