numpy保存数组,字典,非结构话数据
注意 保存字典数组是用save()函数保存
保存非结构化数据使用savez()函数保存
非结构化读取的数据,若调用具体元素需要在后边加[()]
想去请看一下例子。
import numpy as np
# 简单的数组保存
arr = np.array([[1, 2], [3, 4]])
np.save('/Users/lilong/Desktop/mm.npy',arr)
arr_load=np.load('/Users/lilong/Desktop/mm.npy')
print(arr_load,'\n\n',arr_load[0])
# 保存字典
dict_ = {'a' : 1, 'b': 2}
np.save('/Users/lilong/Desktop/dd.npy',arr)
dict_load=np.load('/Users/lilong/Desktop/dd.npy')
print('\n\n',dict_load,'\n\n',dict_load['a'])
# 非结构化数据保存
str_ = 'abc'
arr_ = np.array([[1, 2], [3, 4]])
dict_ = {'a' : 1, 'b': 2}
np.savez('/Users/lilong/Desktop/nn.npz', st= str_, ar = arr_, dic= dict_)
data = np.load('/Users/lilong/Desktop/nn.npz')
print('....\n',data['st'],'\n',data['st'][()])
print('....\n',data['ar'],'....\n',data['ar'][0],'\n\n',data['ar'][()][0])
print('....\n',data['dic'],'\n\n',data['dic'][()])
#print('....\n',data['dic']['a']) # 报错
print('....\n',data['dic'][()]['a'])
输出结果:
[[1 2]
[3 4]]
[1 2]
{'a': 1, 'b': 2}
1
....
abc
abc
....
[[1 2]
[3 4]] ....
[1 2]
[1 2]
....
{'a': 1, 'b': 2}
{'a': 1, 'b': 2}
....
1
读取一个目录下的所有npy文件,并链接成一个字典并保存
import os
import numpy as np
import matplotlib.pyplot as plt
# /home/kuka_data/256x256 下共有80个npy文件
# 每个文件中有82条数据,每条数据是一个字典,其中有两个元素
# Disp 中存的是一个一行三列矩阵
# obs 中存的是一张256x256x4的彩色图片矩阵(numpy)
dict_data = {"Disp": [], "obs": []}
for path, lists, frame in os.walk("/home/kuka_data/256x256"):
print(path)
print(lists)
print(frame)
for value in frame:
# print(value)
data = np.load(path+"/"+value,allow_pickle=True).item()
# print(data)
for key,values in data.items():
dict_data[key].extend(values)
np.save('/home/kuka_data/data', dict_data)
print(len(dict_data["Disp"]))
print(np.array(dict_data["Disp"]).shape)
print(dict_data["obs"][1].shape)
load_dict = np.load('/home/kuka_data/data.npy',allow_pickle=True).item()
print(len(load_dict["Disp"]))
print(np.array(load_dict["Disp"]).shape)
print(load_dict["obs"][1].shape)
结果
/home/kuka_data/256x256
[]
['kuku_displacement2-1566648687.481698.npy', 'kuku_displacement2-1566648836.7948618.npy', 'kuku_displacement2-1566648802.7720268.npy', 'kuku_displacement2-1566648829.7204263.npy', 'kuku_displacement2-1566648738.5510986.npy', 'kuku_displacement2-1566648795.8393836.npy', 'kuku_displacement2-1566648679.6099687.npy', 'kuku_displacement2-1566648578.9564948.npy', 'kuku_displacement2-1566648607.8536177.npy', 'kuku_displacement2-1566648600.5029716.npy', 'kuku_displacement2-1566648745.6686969.npy', 'kuku_displacement2-1566648717.2477114.npy', 'kuku_displacement2-1566648781.556605.npy', 'kuku_displacement2-1566648571.9120362.npy', 'kuku_displacement2-1566648815.408891.npy', 'kuku_displacement2-1566648774.5511177.npy', 'kuku_displacement2-1566648831.351188.npy', 'kuku_displacement2-1566648752.824365.npy', 'kuku_displacement2-1566648824.4033365.npy', 'kuku_displacement2-1566648758.49715.npy', 'kuku_displacement2-1566648686.7624846.npy', 'kuku_displacement2-1566648586.2092843.npy', 'kuku_displacement2-1566648810.2000067.npy', 'kuku_displacement2-1566648593.1538253.npy', 'kuku_displacement2-1566648636.5948677.npy', 'kuku_displacement2-1566648643.9855971.npy', 'kuku_displacement2-1566648788.6289644.npy', 'kuku_displacement2-1566648767.5792081.npy', 'kuku_displacement2-1566648702.697138.npy', 'kuku_displacement2-1566648715.7133927.npy', 'kuku_displacement2-1566648643.735781.npy', 'kuku_displacement2-1566648729.729601.npy', 'kuku_displacement2-1566648607.585559.npy', 'kuku_displacement2-1566648593.1402547.npy', 'kuku_displacement2-1566648701.5483274.npy', 'kuku_displacement2-1566648693.7564404.npy', 'kuku_displacement2-1566648731.4295425.npy', 'kuku_displacement2-1566648838.2915816.npy', 'kuku_displacement2-1566648680.0441225.npy', 'kuku_displacement2-1566648760.147938.npy', 'kuku_displacement2-1566648579.021789.npy', 'kuku_displacement2-1566648708.7174547.npy', 'kuku_displacement2-1566648622.2831016.npy', 'kuku_displacement2-1566648800.9260888.npy', 'kuku_displacement2-1566648807.9214253.npy', 'kuku_displacement2-1566648794.0541906.npy', 'kuku_displacement2-1566648772.8288097.npy', 'kuku_displacement2-1566648614.833823.npy', 'kuku_displacement2-1566648586.2228277.npy', 'kuku_displacement2-1566648722.7077215.npy', 'kuku_displacement2-1566648672.4963348.npy', 'kuku_displacement2-1566648694.6013956.npy', 'kuku_displacement2-1566648779.953965.npy', 'kuku_displacement2-1566648765.708791.npy', 'kuku_displacement2-1566648744.098226.npy', 'kuku_displacement2-1566648672.1221662.npy', 'kuku_displacement2-1566648600.7277622.npy', 'kuku_displacement2-1566648658.0078316.npy', 'kuku_displacement2-1566648651.0598576.npy', 'kuku_displacement2-1566648787.0580876.npy', 'kuku_displacement2-1566648709.9425685.npy', 'kuku_displacement2-1566648817.3893623.npy', 'kuku_displacement2-1566648665.199489.npy', 'kuku_displacement2-1566648629.2857726.npy', 'kuku_displacement2-1566648651.0284786.npy', 'kuku_displacement2-1566648822.6401062.npy', 'kuku_displacement2-1566648614.9254959.npy', 'kuku_displacement2-1566648557.7999866.npy', 'kuku_displacement2-1566648564.842408.npy', 'kuku_displacement2-1566648564.8106415.npy', 'kuku_displacement2-1566648622.0170007.npy', 'kuku_displacement2-1566648629.633209.npy', 'kuku_displacement2-1566648571.8874032.npy', 'kuku_displacement2-1566648665.0909448.npy', 'kuku_displacement2-1566648636.7024834.npy', 'kuku_displacement2-1566648557.730382.npy', 'kuku_displacement2-1566648751.2538974.npy', 'kuku_displacement2-1566648737.0951996.npy', 'kuku_displacement2-1566648724.288052.npy', 'kuku_displacement2-1566648658.1410203.npy']
6560
(6560, 3)
(256, 256, 4)
6560
(6560, 3)
(256, 256, 4)