Ray-Evolution Strategies、Cython 和 Streaming MapReduce

本篇主要介绍强化学习算法ES,Cython应用和Streaming MapReduce在Ray中的应用。ES算法主要介绍有算法的运行和算法的核心类worker。Cython介绍将python代码转化c语言和注意事项。Streaming MapReduce主要介绍如何使用Ray的actor功能实现一个简单的流应用程序。它实现了一个流式MapReduce的例子。

1. Evolution Strategies ES

本节主要提供Ray框架中ES的示例,代码链接

要运行应用程序,首先安装一些依赖项。

pip install tensorflow
pip install gym

脚本可以按如下方式运行。注意,该配置已调优为在Humanoid-v1gym环境下工作。

rllib train --env=Humanoid-v1 --run=ES

要在集群上训练策略(例如,使用900个worker),请运行以下命令。

rllib train \
    --env=Humanoid-v1 \
    --run=ES \
    --redis-address=<redis-address> \
    --config='{"num_workers": 900, "episodes_per_batch": 10000, "train_batch_size": 100000}'

在这个例子的核心,我们定义了一个worker类。这个worker有一个do_rollouts方法,该方法将用于在给定环境中模拟随机扰动的策略。

@ray.remote
class Worker(object):
    def __init__(self, config, policy_params, env_name, noise):
        self.env = # Initialize environment.
        self.policy = # Construct policy.
        # Details omitted.

    def do_rollouts(self, params):
        perturbation = # Generate a random perturbation to the policy.

        self.policy.set_weights(params + perturbation)
        # Do rollout with the perturbed policy.

        self.policy.set_weights(params - perturbation)
        # Do rollout with the perturbed policy.

        # Return the rewards.

在主循环中,我们用这个类创建了许多actor。

workers = [Worker.remote(config, policy_params, env_name, noise_id)
           for _ in range(num_workers)]

然后,我们进入一个无限循环,在这个循环中,我们使用actor执行滚动,并使用滚动的奖励来更新策略。

while True:
    # Get the current policy weights.
    theta = policy.get_weights()
    # Put the current policy weights in the object store.
    theta_id = ray.put(theta)
    # Use the actors to do rollouts, note that we pass in the ID of the policy
    # weights.
    rollout_ids = [worker.do_rollouts.remote(theta_id), for worker in workers]
    # Get the results of the rollouts.
    results = ray.get(rollout_ids)
    # Update the policy.
    optimizer.update(...)

此外,请注意,我们创建了一个表示随机噪声共享块的大对象。然后,我们将该块放入对象存储中,这样每个worker actor就可以使用它,而不需要创建自己的副本。

@ray.remote
def create_shared_noise():
    noise = np.random.randn(250000000)
    return noise

noise_id = create_shared_noise.remote()

回调noise id参数被传递到actor构造函数中。

2.Cython

本部分主要介绍在ray中使用cython生成C代码的示例。Cython是属于python的超集,他首先会将python代码转化成C语言代码,然后通过c编译器生成可执行文件。

2.1启动

首先cd到目录$RAY_HOME/examples/cython运行如下:

pip install scipy # For BLAS example
pip install -e .
python cython_main.py --help

可以从Python脚本或解释器中导入cython_examples模块。

2.2 注意事项

  • 必须在任何*.pyx文件的顶部包含以下两行
#!python
# cython: embedsignature=True, binding=True
  • 你无法在* .pyx文件中修饰Cython函数(有很多方法可以解决这个问题,但是在Cython和Python之间创建一个漏洞抽象,这对于支持来说非常具有挑战性)。 相反,在Python代码中更喜欢以下内容:
some_cython_func = ray.remote(some_cython_module.some_cython_func)
  • 不能将内存缓冲区传输到远程函数(请参见示example8,该函数当前失败);远程函数必须返回一个值。
  • 有关如何分别调用,定义和构建Cython代码的示例,请查看cython_main.pycython_simple.pyxsetup.pyCython文档也非常有用。
  • 来自cython自身不支持的限制。
  • 我们目前不支持编译Cython代码并将其分发给ray集群。换句话说,Cython开发人员负责编译和分发任何Cython代码到他们的集群中(对于需要像scipy这样的Python包的用户来说,情况也是如此)。
  • 对于大多数简单的用例,开发人员不需要担心Python 2或Python 3,但是需要关心的用户可以查看language_level Cython编译器指令(请参阅这里)。

3.Streaming MapReduce

本部分将介绍如何使用Ray的actor功能实现一个简单的流应用程序。它实现了一个流式MapReduce,计算维基百科文章的字数。
您可以查看这个示例的代码

要运行示例,需要安装依赖项:

pip install wikipedia

然后执行一下命令:

python ray/examples/streaming/streaming.py

对于每一轮阅读的文章,脚本将输出这些文章的前10个单词及其字数:

article index = 0
   the 2866
   of 1688
   and 1448
   in 1101
   to 593
   a 553
   is 509
   as 325
   are 284
   by 261
article index = 1
   the 3597
   of 1971
   and 1735
   in 1429
   to 670
   a 623
   is 578
   as 401
   by 293
   for 285
article index = 2
   the 3910
   of 2123
   and 1890
   in 1468
   to 658
   a 653
   is 488
   as 364
   by 362
   for 297
article index = 3
   the 2962
   of 1667
   and 1472
   in 1220
   a 546
   to 538
   is 516
   as 307
   by 253
   for 243
article index = 4
   the 3523
   of 1866
   and 1690
   in 1475
   to 645
   a 583
   is 572
   as 352
   by 318
   for 306
...

注意,这个例子使用了分布式actor句柄,这仍然被认为是实验性的。

有一个Mapper actor,它有一个get_range方法,用于检索一定范围内的单词计数:

@ray.remote
class Mapper(object):

    def __init__(self, title_stream):
        # Constructor, the title stream parameter is a stream of wikipedia
        # article titles that will be read by this mapper

    def get_range(self, article_index, keys):
        # Return counts of all the words with first
        # letter between keys[0] and keys[1] in the
        # articles that haven't been read yet with index
        # up to article_index

Reducer actor拥有一个映射器列表,在它们上面调用get_range并累积结果。

@ray.remote
class Reducer(object):

    def __init__(self, keys, *mappers):
         # Constructor for a reducer that gets input from the list of mappers
         # in the argument and accumulates word counts for words with first
         # letter between keys[0] and keys[1]

    def next_reduce_result(self, article_index):
         # Get articles up to article_index that haven't been read yet,
         # accumulate the word counts and return them

在驱动程序上,我们创建了一些映射器和简化器,并运行流式MapReduce:

streams = # Create list of num_mappers streams
keys = # Partition the keys among the reducers.

# Create a number of mappers.
mappers = [Mapper.remote(stream) for stream in streams]

# Create a number of reduces, each responsible for a different range of keys.
# This gives each Reducer actor a handle to each Mapper actor.
reducers = [Reducer.remote(key, *mappers) for key in keys]

article_index = 0
while True:
    counts = ray.get([reducer.next_reduce_result.remote(article_index)
                      for reducer in reducers])
    article_index += 1

实际示例读取文章列表并创建一个stream对象,该对象从列表中生成无限的文章流。这是一个小例子,用来说明这个想法。实际上,我们将为每个映射器生成一个非重复项流。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值