数据结构与算法之路-7(排序)

归并排序和快速排序

分治思想
1.分治思想:分治,顾明思意,就是分而治之,将一个大问题分解成小的子问题来解决,小的子问题解决了,大问题也就解决了。
2.分治与递归的区别:分治算法一般都用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧。

一、归并排序
1.算法原理
先把数组从中间分成前后两部分,然后对前后两部分分别进行排序,再将排序好的两部分合并到一起,这样整个数组就有序了。这就是归并排序的核心思想。如何用递归实现归并排序呢?写递归代码的技巧就是分写得出递推公式,然后找到终止条件,最后将递推公式翻译成递归代码。递推公式怎么写?如下
递推公式:merge_sort(p…r) = merge(merge_sort(p…q), merge_sort(q+1…r))
终止条件:p >= r 不用再继续分解
2.代码实现 如下
3.性能分析
1)算法稳定性:
归并排序稳不稳定关键要看merge()函数,也就是两个子数组合并成一个有序数组的那部分代码。在合并的过程中,如果 A[p…q] 和 A[q+1…r] 之间有值相同的元素,那我们就可以像伪代码中那样,先把 A[p…q] 中的元素放入tmp数组,这样 就保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一种稳定排序算法。
2)时间复杂度:分析归并排序的时间复杂度就是分析递归代码的时间复杂度
如何分析递归代码的时间复杂度?
递归的适用场景是一个问题a可以分解为多个子问题b、c,那求解问题a就可以分解为求解问题b、c。问题b、c解决之后,我们再把b、c的结果合并成a的结果。若定义求解问题a的时间是T(a),则求解问题b、c的时间分别是T(b)和T©,那就可以得到这样的递推公式:T(a) = T(b) + T© + K,其中K等于将两个子问题b、c的结果合并成问题a的结果所消耗的时间。这里有一个重要的结论:不仅递归求解的问题可以写成递推公式,递归代码的时间复杂度也可以写成递推公式。套用这个公式,那么归并排序的时间复杂度就可以表示为:
T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2T(n/2) + n; n>1,其中n就是merge()函数合并两个子数组的的时间复杂度O(n)。
T(n) = 2
T(n/2) + n
= 2*(2T(n/4) + n/2) + n = 4T(n/4) + 2n
= 4
(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n
= 8*(2T(n/16) + n/8) + 3n = 16T(n/16) + 4n

= 2^k * T(n/2^k) + k * n

当T(n/2^k)=T(1) 时,也就是 n/2^k=1,我们得到k=log2n。将k带入上面的公式就得到T(n)=Cn+nlog2n。如用大O表示法,T(n)就等于O(nlogn)。所以,归并排序的是复杂度时间复杂度就是O(nlogn)。
3)空间复杂度:归并排序算法不是原地排序算法,空间复杂度是O(n)
为什么?因为归并排序的合并函数,在合并两个数组为一个有序数组时,需要借助额外的存储空间。为什么空间复杂度是O(n)而不是O(nlogn)呢?如果我们按照分析递归的时间复杂度的方法,通过递推公式来求解,那整个归并过程需要的空间复杂度就是O(nlogn),但这种分析思路是有问题的!因为,在实际上,递归代码的空间复杂度并不是像时间复杂度那样累加,而是这样的过程,即在每次合并过程中都需要申请额外的内存空间,但是合并完成后,临时开辟的内存空间就被释放掉了,在任意时刻,CPU只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时空间再大也不会超过n个数据的大小,所以空间复杂度是O(n)。

二、快速排序

1.算法原理
快排的思想是这样的:如果要排序数组中下标从p到r之间的一组数据,我们选择p到r之间的任意一个数据作为pivot(分区点)。然后遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放到右边,将povit放到中间。经过这一步之后,数组p到r之间的数据就分成了3部分,前面p到q-1之间都是小于povit的,中间是povit,后面的q+1到r之间是大于povit的。根据分治、递归的处理思想,我们可以用递归排序下标从p到q-1之间的数据和下标从q+1到r之间的数据,直到区间缩小为1,就说明所有的数据都有序了。
递推公式:quick_sort(p…r) = quick_sort(p…q-1) + quick_sort(q+1, r)
终止条件:p >= r
2.代码实现 如下
3.性能分析
1)算法稳定性:
因为分区过程中涉及交换操作,如果数组中有两个8,其中一个是pivot,经过分区处理后,后面的8就有可能放到了另一个8的前面,先后顺序就颠倒了,所以快速排序是不稳定的排序算法。比如数组[1,2,3,9,8,11,8],取后面的8作为pivot,那么分区后就会将后面的8与9进行交换。
2)时间复杂度:最好、最坏、平均情况
快排也是用递归实现的,所以时间复杂度也可以用递推公式表示。
如果每次分区操作都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并的相同。
T(1) = C; n=1 时,只需要常量级的执行时间,所以表示为 C。
T(n) = 2*T(n/2) + n; n>1
所以,快排的时间复杂度也是O(nlogn)。
如果数组中的元素原来已经有序了,比如1,3,5,6,8,若每次选择最后一个元素作为pivot,那每次分区得到的两个区间都是不均等的,需要进行大约n次的分区,才能完成整个快排过程,而每次分区我们平均要扫描大约n/2个元素,这种情况下,快排的时间复杂度就是O(n^2)。
前面两种情况,一个是分区及其均衡,一个是分区极不均衡,它们分别对应了快排的最好情况时间复杂度和最坏情况时间复杂度。那快排的平均时间复杂度是多少呢?T(n)大部分情况下是O(nlogn),只有在极端情况下才是退化到O(n^2),而且我们也有很多方法将这个概率降低。
3)空间复杂度:快排是一种原地排序算法,空间复杂度是O(1)
四、归并排序与快速排序的区别
归并和快排用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢?
1.归并排序,是先递归调用,再进行合并,合并的时候进行数据的交换。所以它是自下而上的排序方式。何为自下而上?就是先解决子问题,再解决父问题。
2.快速排序,是先分区,在递归调用,分区的时候进行数据的交换。所以它是自上而下的排序方式。何为自上而下?就是先解决父问题,再解决子问题。
五、思考
1.O(n)时间复杂度内求无序数组中第K大元素,比如4,2,5,12,3这样一组数据,第3大元素是4。
我们选择数组区间A[0…n-1]的最后一个元素作为pivot,对数组A[0…n-1]进行原地分区,这样数组就分成了3部分,A[0…p-1]、A[p]、A[p+1…n-1]。
如果如果p+1=K,那A[p]就是要求解的元素;如果K>p+1,说明第K大元素出现在A[p+1…n-1]区间,我们按照上面的思路递归地在A[p+1…n-1]这个区间查找。同理,如果K<p+1,那我们就在A[0…p-1]区间查找。

//1.归并排序     	--伪代码
// 归并排序算法, A 是数组,n 表示数组大小
	merge_sort(A, n) {
	  merge_sort_c(A, 0, n-1)
	}
	// 递归调用函数
	merge_sort_c(A, p, r) {
	  // 递归终止条件
	  if p >= r then return
	  // 取 p 到 r 之间的中间位置 q
	  q = (p+r) / 2
	  // 分治递归
	  merge_sort_c(A, p, q)
	  merge_sort_c(A, q+1, r)
	  // 将 A[p...q] 和 A[q+1...r] 合并为 A[p...r]
	  merge(A[p...r], A[p...q], A[q+1...r])
	}
	merge(A[p...r], A[p...q], A[q+1...r]) {
	  var i := p,j := q+1,k := 0 // 初始化变量 i, j, k
	  var tmp := new array[0...r-p] // 申请一个大小跟 A[p...r] 一样的临时数组
	  while i<=q AND j<=r do {
	    if A[i] <= A[j] {
	      tmp[k++] = A[i++] // i++ 等于 i:=i+1
	    } else {
	      tmp[k++] = A[j++]
	    }
	  }
	  // 判断哪个子数组中有剩余的数据
	  var start := i,end := q
	  if j<=r then start := j, end:=r
	  // 将剩余的数据拷贝到临时数组 tmp
	  while start <= end do {
	    tmp[k++] = A[start++]
	  }
	  // 将 tmp 中的数组拷贝回 A[p...r]
	  for i:=0 to r-p do {
	    A[p+i] = tmp[i]
	  }
	}
	注:merge()合并函数如果借助哨兵代码就会简洁很多
	
	2.快速排序
	// 快速排序,A 是数组,n 表示数组的大小
	quick_sort(A, n) {
	  quick_sort_c(A, 0, n-1)
	}
	// 快速排序递归函数,p,r 为下标
	quick_sort_c(A, p, r) {
	  if p >= r then return
	  q = partition(A, p, r) // 获取分区点
	  quick_sort_c(A, p, q-1)
	  quick_sort_c(A, q+1, r)
	}
	//分区函数
	partition(A, p, r) {
	  pivot := A[r]
	  i := p
	  for j := p to r-1 do {
	    if A[j] < pivot {
	      swap A[i] with A[j]
	      i := i+1
	    }
	  }
	  swap A[i] with A[r]
	  return i
	}
	找第N大数据java版本代码
	/**
	     * 查找一个数组中第N大的数
	     * 利用快速排序查找positon的方法,将大于最后一个元素的全部数据放在左边,小于最后一个元素的全部数据放在右边
	     * 如果第一次找到的postion为q(下标),那么以为着q左边有q个元素且左边的数全部大于a[q],
	     * 那么如果q+1=N,则a[q]为第N大数
	     * 如果q+1>N,则第N大数在q左边,反之在q右边
	     * @param a
	     */
	    public static int findMaxN(int[] a, int n){
	        int res ;
	        int partion = partionByGt(a, 0, a.length - 1);
	        while (partion + 1 != n) {
	            if (partion + 1 > n) {
	                partion = partionByGt(a, 0, partion - 1);
	            }else{
	                partion = partionByGt(a, partion+1, a.length-1);
	            }
	        }
	        res = a[partion];
	        return res;
	    }
	    /**
	     * 和partionIndex方法逻辑大致一样,判断条件为大于
	     * 将大于分区值得数全部移位到左边
	     * @param a
	     * @param startIndex
	     * @param endIndex
	     * @return
	     */
	    private static int partionByGt(int[] a, int startIndex,int endIndex) {
	        int i = startIndex;
	        int j = startIndex;
	        int temp ;
	        for (; j < endIndex; j++) {
	            if (a[j] > a[endIndex]) {
	                if (i != j) {
	                    temp = a[j];
	                    a[j] = a[i];
	                    a[i] = temp;
	                }
	                i+=1;
	            }
	        }
	        temp = a[endIndex ];
	        a[endIndex] = a[i];
	        a[i] = temp;
	        return i;
	    }
	```

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值