C45算法思想分析

C4.5算法是一种决策树学习算法,它通过信息增益比选择属性,克服ID3偏向选择多值属性的问题,并在构建过程中进行剪枝,提高效率。算法包括计算类别信息熵、属性信息熵、信息增益、信息增益率和属性分裂信息度量等步骤,适用于处理连续属性和不完整数据。C4.5的优点在于易于理解,准确率高,但效率较低且需要内存容纳全部数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                               C45算法

                                                                                  个人博客:www.xiaobeigua.icu


注意:学习C45算法思想前建议先了解ID3算法思想   :ID3算法思想

C45主要思想:

用信息增益比来选择属性,克服了用信息增益选择属性是偏向选择去之多的属性的不足

在数的构造过程中进行剪枝

能够对连续的属性进行离散化处理

能够对不完整的数据进行处理

C45算法步骤(比id3多两步)

  1. 计算类别信息熵
  2. 计算每个属性的信息熵
  3. 计算信息增益
  4. 计算属性信息分裂度量
  5. 计算信息增益率

C4.5优点与缺点:

优点:产生的分类规则易于理解,准确率较高。
缺点:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。

C4.5例子  

1 计算类别信息熵

类别信息熵表示的是所有样本中各种类别出现的不确定性之和。根据熵的概念,熵越大,不确定性就越大,把事情搞清楚所需要的信息量就越多。

2. 计算每个属性的信息熵 

每个属性的信息熵相当于一种条件熵。他表示的是在某种属性的条件下,各种类别出现的不确定性之和。属性的信息熵越大,表示这个属性中拥有的样本类别越不“纯”。

3. 计算信息增益

信息增益的 = 熵 - 条件熵,在这里就是 类别信息熵 - 属性信息熵,它表示的是信息不确定性减少的程度。如果一个属性的信息增益越大,就表示用这个属性进行样本划分可以更好的减少划分后样本的不确定性,当然,选择该属性就可以更快更好地完成我们的分类目标。

信息增益就是ID3算法的特征选择指标。

但是我们假设这样的情况,每个属性中每种类别都只有一个样本,那这样属性信息熵就等于零,根据信息增益就无法选择出有效分类特征。所以,C4.5选择使用信息增益率对ID3进行改进。

4.计算属性分裂信息度量

用分裂信息度量来考虑某种属性进行分裂时分支的数量信息和尺寸信息,我们把这些信息称为属性的内在信息(instrisic information)。信息增益率用信息增益 / 内在信息,会导致属性的重要性随着内在信息的增大而减小(也就是说,如果这个属性本身不确定性就很大,那我就越不倾向于选取它),这样算是对单纯用信息增益有所补偿。

5. 计算信息增益率

天气的信息增益率最高,选择天气为分裂属性。发现分裂了之后,天气是“阴”的条件下,类别是”纯“的,所以把它定义为叶子节点,选择不“纯”的结点继续分裂。

在子结点当中重复过程1~5

至此,这个数据集上C4.5的计算过程就算完成了,一棵树也构建出来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值