985C2. Encryption (medium) 状dp

第一次见到这样状压的dp,写一篇博客。

朴素做法是区间dp
dpij i表示的是位置,j表示的是当前情况分了j块的最大值。每次一个状态i枚举j块,再枚举0-i来取j最大。
dpij = max(dpij,dpzi-1+(sumi-sumz)%p)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int maxn = 3e3+5;
const int inf = 0x3f3f3f3f;
ll dp[maxn][maxn];
ll sum[maxn];

int main(){
    IO;
    //memset(dp,-inf,sizeof(dp));
    int n,k,p;cin>>n>>k>>p;
    vector<int>a(n+1);for1(i,n){
        cin>>a[i];
        a[i]%=p;
    }
    for1(i,n) (sum[i] = sum[i-1]+a[i])%=p;
    //for1(i,n) cerr<<sum[i]<<' ';
    //cerr<<'\n';
    //dp[1][1] = a[1]%p;
    memset(dp,-inf,sizeof(dp));
    dp[0][0] = 0;
    for1(i,n){
        for1(j,min(i,k)){
            for(int z = 0;z<=i;z++){
                dp[i][j] = max(dp[i][j],dp[z][j-1]+((sum[i]-sum[z]+p)%p));
            }
        }
    }
     for1(i,n){
        for1(j,k)cerr<<dp[i][j]<<' ';
        cerr<<'\n';
    }
    cout <<dp[n][k]<<'\n';
    return 0;
}

这样会TLE
优化的时候可以发现我们可以状压i个状态把他变成取余后的sumi

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int maxn = 2e4+5;
const int inf = 0x3f3f3f3f;
ll dp[105][55];
ll sum[maxn];

int main(){
    IO;
    //memset(dp,-inf,sizeof(dp));
    int n,k,p;cin>>n>>k>>p;
    vector<int>a(n+1);for1(i,n){
        cin>>a[i];
        a[i]%=p;
    }
    for1(i,n) (sum[i] = sum[i-1]+a[i])%=p;
    //for1(i,n) cerr<<sum[i]<<' ';
    //cerr<<'\n';
    //dp[1][1] = a[1]%p;
    memset(dp,-inf,sizeof(dp));
    dp[0][0] = 0;
    for1(i,n){
        for1(j,min(i,k)){
            for(int z = 0;z<p;z++){
                dp[sum[i]][j] = max(dp[sum[i]][j],dp[z][j-1]+((sum[i]-z+p)%p));
            }
        }
    }
    /// for1(i,n){
       // for1(j,k)cerr<<dp[i][j]<<' ';
        //cerr<<'\n';
    //}
    cout <<dp[sum[n]][k]<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值