第一次见到这样状压的dp,写一篇博客。
朴素做法是区间dp
dpij i表示的是位置,j表示的是当前情况分了j块的最大值。每次一个状态i枚举j块,再枚举0-i来取j最大。
dpij = max(dpij,dpzi-1+(sumi-sumz)%p)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int maxn = 3e3+5;
const int inf = 0x3f3f3f3f;
ll dp[maxn][maxn];
ll sum[maxn];
int main(){
IO;
//memset(dp,-inf,sizeof(dp));
int n,k,p;cin>>n>>k>>p;
vector<int>a(n+1);for1(i,n){
cin>>a[i];
a[i]%=p;
}
for1(i,n) (sum[i] = sum[i-1]+a[i])%=p;
//for1(i,n) cerr<<sum[i]<<' ';
//cerr<<'\n';
//dp[1][1] = a[1]%p;
memset(dp,-inf,sizeof(dp));
dp[0][0] = 0;
for1(i,n){
for1(j,min(i,k)){
for(int z = 0;z<=i;z++){
dp[i][j] = max(dp[i][j],dp[z][j-1]+((sum[i]-sum[z]+p)%p));
}
}
}
for1(i,n){
for1(j,k)cerr<<dp[i][j]<<' ';
cerr<<'\n';
}
cout <<dp[n][k]<<'\n';
return 0;
}
这样会TLE
优化的时候可以发现我们可以状压i个状态把他变成取余后的sumi
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
#define IO ios::sync_with_stdio(false);cin.tie(0);cout.tie(0)
const int maxn = 2e4+5;
const int inf = 0x3f3f3f3f;
ll dp[105][55];
ll sum[maxn];
int main(){
IO;
//memset(dp,-inf,sizeof(dp));
int n,k,p;cin>>n>>k>>p;
vector<int>a(n+1);for1(i,n){
cin>>a[i];
a[i]%=p;
}
for1(i,n) (sum[i] = sum[i-1]+a[i])%=p;
//for1(i,n) cerr<<sum[i]<<' ';
//cerr<<'\n';
//dp[1][1] = a[1]%p;
memset(dp,-inf,sizeof(dp));
dp[0][0] = 0;
for1(i,n){
for1(j,min(i,k)){
for(int z = 0;z<p;z++){
dp[sum[i]][j] = max(dp[sum[i]][j],dp[z][j-1]+((sum[i]-z+p)%p));
}
}
}
/// for1(i,n){
// for1(j,k)cerr<<dp[i][j]<<' ';
//cerr<<'\n';
//}
cout <<dp[sum[n]][k]<<'\n';
return 0;
}