分析
题目要求我们找子矩阵。要求子矩阵最外圈为1,并且除最外圈外,0和1的个数相差不能超过1,矩阵的长宽必须大于1。也没啥特殊的做法,就是暴力。数据量最大为500,稍加思考, O ( n 4 ) O(n^4) O(n4)不足应付,那考虑用前缀和降低时间复杂度,可以降到 O ( n 3 ) O(n^3) O(n3)。代码意思很简单,矩阵中的0改为-1,用b数组表示纵向的前缀和,先二重循环找行,然后一重循环找列,数组s表示i行和j行之间到k列的前缀和。横向的连续1区间比较好判断,那如何判断纵向区间内是否全是1?借助先前的b数组,若 b j k − b i − 1 k = = j − i + 1 b_{jk}-b_{i-1k}==j-i+1 bjk−bi−1k==j−i+1,则第 k k k列第 i i i行到第 j j j行全部是1。接下来就简单了。
代码
#include<iostream>
#define ll long long
using namespace std;
const int N=25e4+5,M=505;
int n,m;
int f[N*2],s[M],a[M][M],b[M][M];
ll ans;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>a[i][j];
if(!a[i][j])a[i][j]=-1;
b[i][j]=a[i][j]+b[i-1][j];
}
s[0]=N;//初始化
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
int pre=1;//区间起始位置
for(int k=1;k<=m;k++)
{
if(a[i][k]!=1||a[j][k]!=1)//有0,排除此情况
{
for(int l=pre;l<=k;l++)
if(b[j][l]-b[i-1][l]==j-i+1)f[s[l]]--;
//有i行到j行全1的列就减
pre=k+1;//直接跳到k的后一个位置
s[k]=N;
continue;
}
if(b[j][k]-b[i-1][k]==j-i+1)ans+=f[s[k-1]]+f[s[k-1]+1]+f[s[k-1]-1];
s[k]=s[k-1]+b[j-1][k]-b[i][k];//j-1行减去i+1行
if(b[j][k]-b[i-1][k]==j-i+1)f[s[k]]++;
}
for(int l=pre;l<=m;l++)
if(b[j][l]-b[i-1][l]==j-i+1)f[s[l]]--;//将f数组清空
}
cout<<ans;
}