2020牛客多校九J-The Escape Plan of Groundhog

原题链接
在这里插入图片描述

分析

题目要求我们找子矩阵。要求子矩阵最外圈为1,并且除最外圈外,0和1的个数相差不能超过1,矩阵的长宽必须大于1。也没啥特殊的做法,就是暴力。数据量最大为500,稍加思考, O ( n 4 ) O(n^4) O(n4)不足应付,那考虑用前缀和降低时间复杂度,可以降到 O ( n 3 ) O(n^3) O(n3)。代码意思很简单,矩阵中的0改为-1,用b数组表示纵向的前缀和,先二重循环找行,然后一重循环找列,数组s表示i行和j行之间到k列的前缀和。横向的连续1区间比较好判断,那如何判断纵向区间内是否全是1?借助先前的b数组,若 b j k − b i − 1 k = = j − i + 1 b_{jk}-b_{i-1k}==j-i+1 bjkbi1k==ji+1,则第 k k k列第 i i i行到第 j j j行全部是1。接下来就简单了。

代码

#include<iostream>
#define ll long long
using namespace std;
const int N=25e4+5,M=505;
int n,m;
int f[N*2],s[M],a[M][M],b[M][M];
ll ans;
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>n>>m;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
		{
			cin>>a[i][j];
			if(!a[i][j])a[i][j]=-1;
			b[i][j]=a[i][j]+b[i-1][j];
		}
	s[0]=N;//初始化
	for(int i=1;i<=n;i++)
		for(int j=i+1;j<=n;j++)
		{
			int pre=1;//区间起始位置
			for(int k=1;k<=m;k++)
			{
				if(a[i][k]!=1||a[j][k]!=1)//有0,排除此情况
				{
					for(int l=pre;l<=k;l++)
						if(b[j][l]-b[i-1][l]==j-i+1)f[s[l]]--;
						//有i行到j行全1的列就减
					pre=k+1;//直接跳到k的后一个位置
					s[k]=N;
					continue;
				}
				if(b[j][k]-b[i-1][k]==j-i+1)ans+=f[s[k-1]]+f[s[k-1]+1]+f[s[k-1]-1];
				s[k]=s[k-1]+b[j-1][k]-b[i][k];//j-1行减去i+1行
				if(b[j][k]-b[i-1][k]==j-i+1)f[s[k]]++;
			}
			for(int l=pre;l<=m;l++)
				if(b[j][l]-b[i-1][l]==j-i+1)f[s[l]]--;//将f数组清空
		}
	cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值