统计学习16

合页损失函数

在这里插入图片描述
此时,线性支持向量机学习的另外一种解释为最优化一下目标函数:
在这里插入图片描述
对于合页损失函数来说,只有当样本点被正确分类且函数间隔(确信度)大于1时,损失为0

  • 我们有以下结论:
    在这里插入图片描述
    合页损失函数是0-1损失函数的上界,可以认为0-1损失函数是真正的损失函数;由于0-1损失函数不是连续可导的,直接优化由0-1损失函数构成的目标函数较为困难,可以认为线性支持向量机是优化由0-1函数的上界(合页损失函数)构成的目标函数
    在这里插入图片描述
    从图中可以看出,合页损失函数不仅要求正确分类,而且只有当确信足够大时候损失才为0;即合页损失函数对学习的要求更高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聆一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值