L2-030 冰岛人 (25 分)
2018年世界杯,冰岛队因1:1平了强大的阿根廷队而一战成名。好事者发现冰岛人的名字后面似乎都有个“松”(son),于是有网友科普如下:
冰岛人沿用的是维京人古老的父系姓制,孩子的姓等于父亲的名加后缀,如果是儿子就加 sson,女儿则加 sdottir。因为冰岛人口较少,为避免近亲繁衍,本地人交往前先用个 App 查一下两人祖宗若干代有无联系。本题就请你实现这个 App 的功能。
输入格式:
输入首先在第一行给出一个正整数 N(1<N≤ 1 0 5 10^5 105),为当地人口数。随后 N 行,每行给出一个人名,格式为:名 姓(带性别后缀),两个字符串均由不超过 20 个小写的英文字母组成。维京人后裔是可以通过姓的后缀判断其性别的,其他人则是在姓的后面加 m 表示男性、f 表示女性。题目保证给出的每个维京家族的起源人都是男性。
随后一行给出正整数 M,为查询数量。随后 M 行,每行给出一对人名,格式为:名1 姓1 名2 姓2。注意:这里的姓是不带后缀的。四个字符串均由不超过 20 个小写的英文字母组成。
题目保证不存在两个人是同名的。
输出格式:
对每一个查询,根据结果在一行内显示以下信息:
若两人为异性,且五代以内无公共祖先,则输出 Yes;
若两人为异性,但五代以内(不包括第五代)有公共祖先,则输出 No;
若两人为同性,则输出 Whatever;
若有一人不在名单内,则输出 NA。
所谓“五代以内无公共祖先”是指两人的公共祖先(如果存在的话)必须比任何一方的曾祖父辈分高。
输入样例:
15
chris smithm
adam smithm
bob adamsson
jack chrissson
bill chrissson
mike jacksson
steve billsson
tim mikesson
april mikesdottir
eric stevesson
tracy timsdottir
james ericsson
patrick jacksson
robin patricksson
will robinsson
6
tracy tim james eric
will robin tracy tim
april mike steve bill
bob adam eric steve
tracy tim tracy tim
x man april mikes
输出样例:
Yes
No
No
Whatever
Whatever
NA
题解
样例图解
第一次查 10、11号节点,最近公共父节点为0号节点,0到10和11的距离均为4,成立,输出Yes;
第二次查 14、10号节点,最近公共父节点为3号节点,3到10和11的距离均为3,不成立,输出No;
第三次查8,6号节点,最近公共父节点为0号节点,0到8的距离均为3,0到和6的距离为2,不成立,输出No;
第四五次查询性别相同,输出Whatever
第六次查询,信息不存在,输出NA。
记下每一个人的父节点,然后找最近公共父节点,再检查最近公共父节点到两个人之间的距离是否都大于3(所谓“五代以内无公共祖先”是指两人的公共祖先(如果存在的话)必须比任何一方的曾祖父辈分高。)。
代码
#include <bits/stdc++.h>
using namespace std;
bool judge(vector<int> &F, int s1, int s2)
{
int n = F.size();
vector<int> count(n, 0);
vector<int> dist1(n, 0);
vector<int> dist2(n, 0);
int t ;
count[s1]++;
count[s2]++;
while(F[s1] != -1)
{
t = F[s1];
count[t]++;
dist1[t] = dist1[s1] + 1;
if(t == s2) //直系祖宗...太乱了,直接false,不加这个,会有两个点过不去
return false;
s1 = t;
}
while(F[s2] != -1)
{
t = F[s2];
count[t]++;
dist2[t] = dist2[s2] + 1;
if(count[t] > 1)
{
if(dist2[t]>=4 && dist1[t] >= 4)
return true;
else
return false;
}
s2 = t;
}
return true;
}
int main()
{
int n;
cin >> n;
string f1, f2;
vector<bool> sex(n);
vector<vector<string> > record(n);
map<string, int> M; //给每个人编号
vector<int> F(n, -1); //父节点编号
int cnt = 0;
for(int i=0;i<n;i++) //编号
{
cin >> f1 >> f2;
M.insert(make_pair(f1, cnt));
int l = f2.size();
if(f2[l-1] == 'm' || f2[l-1] == 'n')
sex[cnt] = 1; //男
else
sex[cnt] = 0;
cnt++;
record[i].push_back(f1);
record[i].push_back(f2);
}
string par;
for(int i=0;i<n;i++) //找父节点
{
f1 = record[i][0];
f2 = record[i][1];
int len = f2.size();
if(f2[len-1] != 'r' && f2[len-1] != 'n') //老祖宗
continue;
if(sex[M[f1]] == true)
par = f2.substr(0, len-4);
else
par = f2.substr(0, len-7);
F[M[f1]] = M[par];
}
int m;
cin >> m;
string t1,t2;
for(int i=0;i<m;i++)
{
cin >> f1 >> f2 >> t1 >> t2;
if(M.find(f1) == M.end() || M.find(t1) == M.end() )
{
cout << "NA" << endl;
continue;
}
if(sex[M[f1]] == sex[M[t1]])
{
cout << "Whatever" << endl;
continue;
}
if(judge(F, M[f1], M[t1]))
{
cout << "Yes" << endl;
}
else
cout << "No" << endl;
}
return 0;
}