无理格在单位区间中稠密

众所周知,实数集 R \R R 模掉平移 + n +n +n 以后就是单位区间 I = [ 0 , 1 ) I=[0, 1) I=[0,1)。众所周知,对任意有理数 α \alpha α,它的格 α Z \alpha\Z αZ I I I中的像是离散的。然而,还有一个知道的比较少的结论,就是如果 α \alpha α 是无理数,则 α Z \alpha\Z αZ I I I 中的像是稠密的。这一现象有许多解释,例如,我们可以把 I I I的首尾接起来,形成一个圆 S 1 S^1 S1,任取一个点 x x x,将其沿着圆转动 α π , 2 α π , ⋯ \alpha\pi,2\alpha\pi,\cdots απ,2απ, 的角度,这样形成的点集是在S^1稠密,也就是说,经过足够长的时间, x x x 几乎会经过 S 1 S^1 S1上的任何一个点。如何来证明这一点呢?

命题:设 α \alpha α 是无理数,则 α \alpha α 的小数部分在 [ 0 , 1 ) [0, 1) [0,1) 中稠密


证明. 为了方便,记 α ˉ \bar\alpha αˉ α \alpha α的小数部分。因为有理数在 [ 0 , 1 ) [0,1) [0,1)中稠密,只需证对任意 x ∈ [ 0 , 1 ) x \in [0, 1) x[0,1),存在一个序列 { n k α ‾ } \{\overline{n_k\alpha}\} {nkα} 收敛于 x x x,其中 n k n_k nk都是整数。我们先断言:存在这样一个序列收敛于0,假设断言成立,那么有这么一个固定的序列 E = { n k α ‾ } E=\{\overline{n_k\alpha}\} E={nkα},满足 lim ⁡ k → ∞ n k α ‾ = 0 \lim_{k\rightarrow\infty} \overline{n_k\alpha} = 0 limknkα=0。现在令 x ∈ [ 0 , 1 ) x\in [0, 1) x[0,1),要证明存在一个序列 { m k α ‾ } \{\overline{m_k\alpha}\} {mkα} 使得 lim ⁡ k → ∞ m k α = x \lim_{k\rightarrow \infty}m_k\alpha=x limkmkα=x,我们从 E E E出发来构造这个序列。对任意 k ∈ N k\in \N kN,存在 l ( k ) ∈ N l(k)\in \N l(k)N,使得 0 < n l ( k ) α ‾ < 1 k 0<\overline {n_{l(k)}\alpha} < \frac 1k 0<nl(k)α<k1,并且存在 r ( k ) ∈ N r(k)\in \N r(k)N,使得
r ( k ) ⋅ n l ( k ) ‾ α ≤ x < ( r ( k ) + 1 ) ⋅ n l ( k ) ‾ α r(k)\cdot\overline {n_{l(k)}}\alpha \le x<(r(k)+1)\cdot\overline{n_{l(k)}}\alpha r(k)nl(k)αx<(r(k)+1)nl(k)α
,我们令 m k = r ( k ) ⋅ n l ( k ) m_k=r(k)\cdot n_{l(k)} mk=r(k)nl(k),则
∣ m k α ‾ − x ∣ < n l ( k ) ‾ < 1 k |\overline{m_k \alpha} - x| <\overline {n_{l(k)}} < \frac 1k mkαx<nl(k)<k1
从而显然 lim ⁡ k → ∞ m k α = x \lim_{k\rightarrow \infty}m_k\alpha=x limkmkα=x.

现在我们来证明断言. 若 a ∈ ( 0 , 1 ) a\in(0,1) a(0,1),设 T ( a ) T(a) T(a) 为满足 ( n − 1 ) a < 1 , n a ≥ 1 (n-1)a < 1, na\ge 1 (n1)a<1,na1 的正整数 n n n. 不难证明 T ( a ) a ‾ < a \overline{T(a)a} < a T(a)a<a T T T右连续,即 lim ⁡ b ↓ a T ( b ) = T ( a ) \lim_{b\downarrow a}T(b) = T(a) limbaT(b)=T(a). 令 n 1 = 1 , n k + 1 = T ( n k α ‾ ) n_1 = 1, n_{k+1} = T(\overline{n_k\alpha}) n1=1,nk+1=T(nkα),则 { n k α ‾ } \{\overline {n_k\alpha}\} {nkα} 是单调减、有下界0的数列,因此存在极限 β \beta β。若 β > 0 \beta>0 β>0,则 β \beta β T T T 的定义域内,令 e = β − T ( β ) β ‾ > 0 e = \beta - \overline{T(\beta)\beta} > 0 e=βT(β)β>0。由于 T T T 右连续,存在 ϵ > 0 \epsilon > 0 ϵ>0 使得对任意 β ≤ x < β + ϵ \beta\le x < \beta + \epsilon βx<β+ϵ T ( x ) = T ( β ) T(x) = T(\beta) T(x)=T(β)。又因为 T ( β ) x ‾ \overline{T(\beta)x} T(β)x x = β x=\beta x=β 附近关于 x x x 连续,存在 0 < δ < ϵ 0<\delta<\epsilon 0<δ<ϵ使得对任意 β ≤ x < β + δ \beta\le x < \beta + \delta βx<β+δ T ( β ) x ‾ < T ( β ) β ‾ + e = β \overline{T(\beta)x} < \overline{T(\beta)\beta} + e = \beta T(β)x<T(β)β+e=β。而由 { n k α ‾ } \{\overline {n_k\alpha}\} {nkα} 趋于 β \beta β 可知存在 k ∈ Z > 0 k\in \Z_{>0} kZ>0,使得 β ≤ n k α ‾ < β + δ \beta \le \overline{n_k\alpha} < \beta + \delta βnkα<β+δ,故 n k + 1 α ‾ = T ( n k α ) n k α ‾ < β \overline{n_{k+1}\alpha} = \overline{T({n_k\alpha}){n_k\alpha}} < \beta nk+1α=T(nkα)nkα<β,而这与 { n k α ‾ } \{\overline {n_k\alpha}\} {nkα} 单调下降至 β \beta β 矛盾。故 β = 0 \beta=0 β=0

​ 断言证毕

证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值