单调函数的不连续点可数——泛函分析观点

M = { f : [ 0 , 1 ] → R : f 单 调 增 } ⊂ C ( [ 0 , 1 ] , R ) M=\{f:[0,1]\rightarrow \R: f 单调增\}\subset C([0, 1],\R) M={f:[0,1]R:f}C([0,1],R). M M M上定义上确界范数,则 M M M是 Banach 空间。令 L x , R x L_x,R_x Lx,Rx 分别表示左右极限算子,不难证明则它们是连续线性泛函。令 D x = L x − R x D_x = L_x - R_x Dx=LxRx.

f f f x x x不连续等价于 D x ( f ) ≠ 0 D_x(f)\neq 0 Dx(f)=0.

N = { f ∈ M : f 至 多 有 可 数 个 不 连 续 点 } N=\{f\in M: f 至多有可数个不连续点\} N={fM:f},则 N N N M M M的子空间。我们证明:

  1. N N N M M M的闭子空间
  2. N N N M M M中稠密

从而 N = M N=M N=M.

对于1, 设 f ∈ N ‾ f\in \overline{N} fN,则存在 ( f n ) ∈ N (f_n)\in N (fn)N, f n → f f_n\rightarrow f fnf,由 D x D_x Dx 连续得若 D x ( f n ) = 0 D_x(f_n) = 0 Dx(fn)=0,对任意 n n n,则 D x ( f ) = 0 D_x(f)=0 Dx(f)=0. 因此 { x : D x ( f ) ≠ 0 } ⊂ ∪ n { x : D x ( f n ) ≠ 0 } \{x:D_x(f)\neq 0\}\subset \cup_{n} \{x:D_x(f_n) \neq 0\} {x:Dx(f)=0}n{x:Dx(fn)=0},由假设,前者是可数的,因此 f ∈ N f\in N fN.

对于2,令 S S S [ 0 , 1 ] [0,1] [0,1]上的单调增阶梯函数集合,则 S ⊂ N S\subset N SN,只需证明 S S S 稠即可。对任意 f ∈ M f\in M fM,令 g = ∑ k = − ∞ ∞ k n 1 { x ∈ [ 0 , 1 ] : k − 1 n ≤ f < k n } g = \sum_{k=-\infty}^\infty \frac kn \mathbb{1}\{x\in[0,1]: \frac {k-1}n \le f < kn \} g=k=nk1{x[0,1]:nk1f<kn},则 ∥ g − f ∥ ≤ 1 n \|g - f\| \le \frac 1n gfn1,而 g ∈ S g\in S gS,证毕。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值