自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(23)
  • 收藏
  • 关注

原创 JAVA基础知识

Collection接口下面的集合:ArrayList:Object[ ]数组。Vector:Object[ ]数组。LinkedList:双向链表HashSet(无序,唯一):基于HashMap实现的,底层使用HashMap来保存元素LinkedHashSet:LinkedHashSet是HashSet的子类,并且其内部是通过LinkedHashMap来实现的TreeSet(有序,唯一):红黑树。

2024-10-28 22:19:48 557

原创 java循环结构

for循环与while循环的区别:初始条件的作用域范围不同,while循环中的初始条件在while循环结束后依然有效。如果循环体语句块至少执行一次,可以考虑使用do-while循环;b、循环条件 ---->一定是boolean类型的变量或表达式。执行过程:a-b-c-d-b-c-d-........-b。执行过程:a-b-c-d-b-c-d-........-b。执行过程:a-c-d-b-c-d-b-....-b。do-while循环至少执行一次循环体语句;该循环至少会执行一次循环体。

2024-06-26 16:40:51 197

原创 java基本数据类型变量间的运算规则及String类的使用

1、自动类型提升(当容量小的变量与容量大的变量做运算时,结果自动转换为容量大的数据类型。ps:在这里容量的大小,并非指占用的内存空间的大小,而是指表示数据范围的大小)特殊情况1:byte、short、char两两做运算,结果都是int。2、String与基本数据类型变量间的只能做连接运算,使用“+”表示。2、String类型的变量,可以使用一对双引号""的方式进行赋值。3、String声明的字符串内部,可以包含0个、1个或多个字符。1、这里的基本数据类型包括boolean在内的。

2024-06-09 15:45:29 176

原创 java基础练习题

但是只有一个类可以声明为public,且要求声明为public的类的类名与源文件名相同。java的社区比较繁荣,有大量开源的第三方的框架可以去使用。

2024-06-08 13:37:47 222

原创 java的核心机制:JVM

因为java会自动清除垃圾,但有用的数据并不是垃圾,不会被清除,所以会出现内存泄露的情况;(java virtual machine,java虚拟机):是一个虚拟的计算机,是java程序的运行环境。JVM具有指令集并使用不同的存储区域,负责执行指令,管理数据、内存、寄存器。提供了一种系统级线程跟踪存储空间的分配情况,在内存空间达到相应的阈值时,检查并释放可被释放的存储器空间;3、GC的自动回收、提高了内存空间的利用效率,也提高了编程人员的效率,很大程度上减少了因为没有释放空间而导致的内存泄漏。

2024-06-08 13:07:46 504 1

原创 常见的DOS命令

rd 文件目录名:删除指定的文件目录(若文件目录内有数据,则会删除失败)cd 目录1\目录2\...:进入指定多级目录。md 文件目录名:创建指定的文件目录。:列出当前目录下的文件以及文件夹。cd\或cd/:返回到根目录。exit:退出命令提示符窗口。cd..:回退到上一级目录。

2024-06-07 20:48:16 109 1

原创 Python笔记-with语句的用法

这样,在 with语句块中,文件对象file被正确打开,代码执行完毕后,无论是否发生异常,文件都会被自动关闭。'with'语句是python中用于管理资源的一种语法结构,它可以帮助确保在代码块执行完毕后资源被正确释放,无论代码块中是否发生异常。4、无论代码块中是否发生异常,都会调用上下文管理器对象的'__exit__' 方法,用于执行一些清理工作。1、'expression'通常是返回一个上下文管理器对象的表达式,这个对象必须实现‘__enter__'和'__exit__'方法。

2024-02-22 20:11:40 636 1

原创 Python笔记-以主程序运行

当python脚本被运行时,解释器会从脚本的第一行开始逐行执行代码,直到到达脚本的末尾。3、使用'if __name__="__main__"来判断当前脚本是否被直接运行,这个条件语句的目的是,当脚本被直接运行(而不是被导入为模块时),执行'main'函数。2、定义了一个名为'main'的函数,包含了主程序的执行流程,包括调用'greet'函数和一个简单的循环。当脚本作为模块被导入时,主程序不会自动执行。假设有两个python脚本,一个是'module.py'另一个是'main_script.py'。

2024-02-22 12:07:30 998 1

原创 Python笔记-程序的描述方式

在计算机编程中,顺序结构是一种基本的程序控制结构,表示程序按照顺序依次执行语句,每一条语句都在前一条语句执行完成后执行。比如赋值语句、输入/输出语句、模块导入语句等。顺序结构是程序中最简单、最基本的控制结构之一。

2024-02-18 22:04:52 1451 1

原创 PyTorch笔记(5)-完整模型训练套路

2、定义模型:创建模型的类,继承自'nn.Module',并在'__init__‘方法中定义模型的层次结构,在forward方法中实现前向传播。(可以使用tensorboard进行可视化,(打开日志文件的方法:在终端输入:tensorboard --logdir=所保存的目录名))6、验证:在每个迭代之后,可以使用验证集进行模型性能的评估,以监控模型的泛化能力。7、保存模型:选择在训练过程中保存模型的方式,以便在需要时加载和使用。a.前向传播:将输入数据传递给模型,计算模型输出。PyTorch提供了。

2024-02-15 22:59:21 409 1

原创 编码器与解码器

在深度学习中,编码器-解码器结构是一种常见的神经网络结构,用于处理序列数据、生成任务等。这种结构主要由两部分组成:编码器和解码器。

2024-02-10 20:48:56 451 1

原创 PyTorch笔记(4)

在PyTorch中,非线性激活函数通常用于神经网络的隐藏层,以引入网络的非线性。非线性激活函数在神经网络中的作用主要有两个方面:1、引入非线性:线性变换的组合仍然是线性的,如果没有非线性激活函数,多层神经网络将等效于单一的线性变换。非线性激活函数通过对神经元的输出进行非线性变换,使网络能够学习和表示更加复杂的函数关系。这是神经网络能够逼近任意复杂函数的关键。2、增加网络的表达能力:非线性激活函数扩展了神经网络的表达能力,使其能够学习和表示更复杂的映射关系。

2024-02-10 20:30:07 1573 1

原创 PyTorch笔记(3)-nn.Module的使用及一些神经网络层

继承‘nn.Module’类是构建自定义神经网络模型的第一步。通过创建一个新的类,并将其继承自‘nn.Module’,可以利用PyTorch提供的丰富的神经网络构建块来定义自己的模型。

2024-02-05 13:55:31 1193 1

原创 PyTorch笔记(1)

Tensor又名张量是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)或更高维的数组。Tensor和numpy的ndarrays类似,但Tensor可以使用GPU加速。由上述例子可以发现:函数名后边带下划线_的函数会修改Tensor本身。例如:x.add_(y)和x.t_()会改变x的值,但x.add(y)和x.t()会返回一个新的Tensor,而x不变。另外Tensor和numpy的数组间的互操作非常容易且快速。

2024-02-04 21:56:57 359 1

原创 Python笔记(5)

两大编程思想:面向过程和面向对象。面向过程:功能上的封装;面向对象:属性和行为上的封装。

2024-02-03 14:18:22 416 1

原创 Python笔记(4)

def 函数名称(参数列表):#此处的参数为形式参数函数体[return返回值列表]

2024-02-02 11:16:22 359

原创 Python笔记(3)

1.漏了末尾的冒号,如if语句、循环语句、else子句等2.缩进错误,该缩进的没有缩进,不该缩进的进行了缩进3.把英文符号写成了中文符号,例如:引号、冒号、括号4.字符串拼接的时候,把数字和字符串拼在一起5.没有定义变量,例如:while循环条件的变量没有定义6.”==“比较运算符和”=“赋值运算符的混用。

2024-02-01 22:27:30 393 1

原创 Python笔记(2)

str.lower():将str字符串全部转成小写字母,结果为一个新的字符串str.upper():将str字符串全部转成大写字母,结果为一个新的字符串str.split(sep=None):把str按照指定的分隔符sep进行分隔,结果为列表类型str.count(sub):结果为sub这个字符串在str中出现的次数str.find(sub):查询sub这个字符串在str中是否存在,如果不存在结果为-1,如果存在,结果为sub首次出现的索引。

2024-02-01 14:30:08 1538 1

原创 Python笔记(1)

序列(常见的序列包括字符串、列表、元组等)是一个用于存储多个值的连续空间,每个值都对应一个整数的编号,称为索引。是python中内置的可变序列;my_list.pop(index):将列表my_list中第index位置的元素删除。my_list.copy():拷贝列表my_list中的所有元素,生成一个新的列表。my_list.reverse(x):将列表my_list中的元素反转。使用索引访问列表中的元素,索引从0开始,负数索引表示从末尾开始倒数。s.index(x):序列s中第一次出现元素x的位置。

2024-01-30 22:17:31 732 1

原创 PyTorch笔记(2)

在PyTorch中,'Dataset'和'是两个关键的类,用于处理和加载数据,特别是在训练神经网络时。

2024-01-28 12:47:38 392

原创 【阅读】CVCL

多视图聚类(MVC)旨在通过将数据样本分类到聚类中来揭示多视图数据的潜在结构。基于深度学习的方法在大规模数据集上表现出强大的特征学习能力。对于大多数现有的深度多视图聚类方法,探索多个视图的不变表示仍然是一个棘手的问题。在本文中,提出了一种跨试图对比学习(CVCL)方法,该方法学习视图不变表示,并通过对比多个视图之间的聚类分配来产生聚类结果。具体来说,首先使用深度自动编码器在预训练阶段提取视图相关特征;接下来提出了一种聚类级CVCL策略,旨在在微调阶段探索多个视图中一致语义标签信息。

2024-01-26 21:42:01 397

原创 【阅读】AMVC

现有的深度多视图聚类方法主要基于自动编码器网络,这些方法寻求共同的潜在变量去单独地重构每个视图的原始输入。然而,由于视图特定的重构损失,要在多个视图上提取一致的潜在表示进行聚类是具有挑战性的。为了解决这个问题,本文提出了对抗性多视图聚类网络。该方法根据不同视图之间的融合潜在表示生成每个视图的样本,以促使更一致的聚类结构。具体而言,多视图编码器用于从所有视图中提取潜在描述,相应的生成器用于生成重构的样本。判别网络和均方损失被联合用来训练多视图编码器和生成器,以平衡每个视图潜在表示的独特性和一致性。

2024-01-18 22:06:55 923

原创 【论文阅读】JSSI

多视图数据描述了具有不同特征模态的图像样本,从而为数据提供了更全面的描述。它的三个基本特征,即共识、互补和冗余,决定了它在计算机视觉任务中的性能。在本文中,我们有效地利用上述三个特征,提出了一种具有联合共享和特定信息 (JSSI) 的深度学习方案进行多视图聚类。为了促进共识,JSSI 通过对抗性相似性约束提取多视图数据的共享信息,该约束是通过分类和判别交互实现的。为了减少冗余,JSSI 分离出特定于视图的特征,并通过差异约束防止它们干扰共享特征。

2024-01-17 20:34:05 927

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除