【阅读】AMVC

摘要

现有的深度多视图聚类方法主要基于自动编码器网络,这些方法寻求共同的潜在变量去单独地重构每个视图的原始输入。然而,由于视图特定的重构损失,要在多个视图上提取一致的潜在表示进行聚类是具有挑战性的。为了解决这个问题,本文提出了对抗性多视图聚类网络。该方法根据不同视图之间的融合潜在表示生成每个视图的样本,以促使更一致的聚类结构。具体而言,多视图编码器用于从所有视图中提取潜在描述,相应的生成器用于生成重构的样本。判别网络和均方损失被联合用来训练多视图编码器和生成器,以平衡每个视图潜在表示的独特性和一致性。此外,还开发了一个自适应融合层,用于获取共享的潜在表示。在这个共享的潜在表示上进一步施加了聚类损失和L1、L2范数约束,以提高聚类性能并区分潜在空间。

网络框图

相关工作

 本文主要是解决现有的基于自动编码器的深度多视图聚类方法存在的一些问题:1.它们只使用重构损失来学习重构样本与原始样本之间的一致性信息,然而重构损失视图特定的,难以在多个视图上提取用于聚类的一致潜在表示;2.共享表示可能对聚类来说不够具有区分性;3.这些方法使用了各种融合方法,但它们忽视了不同视图通常在重要性方面存在差异。

为了解决这些问题:提出了一种对抗式多视图聚类模型,以提取嵌入在多视图数据中的内部结构。该模型采用对抗训练作为正则化器以基于重构损失指导编码器和生成器的训练,确保重构样本和原始输入之间的一致关系。此外,AMVC通过开发权重共享多视图编码器来学习有效的映射,它可以将原始数据特征映射到一个共享和低维嵌入空间。另外还设计了一个可学习的加权机制,自适应地融合每个视图以获得共享的潜在表示,并且还使用理想标签和预定义标签的分布之间的相对熵定义聚类损失,以约束共享的潜在表示并改善聚类性能。还在共享潜在表示上执行L1,2范数约束,以使提取的特征更具有辨别力。

本文创新点:1.提出了一种全新的AMVC网络。它使用多视图编码器从多个视图中提取潜在描述,并使用多视图生成器生成每个视图的样本,从而促进每个视图提取的潜在特征的独特性和共享性,并有效提高聚类性能;2.引入了一种自适应融合,自适应地学习每个视图的潜在特征的权重,然后得到最优的共享表示(现有的融合方法,在融合过程中都平等地对待所有视图,但是,在融合成一个共享表示时,不同的视图可能具有不同的角色)。

AMVC网络

1.多视图编码器模块 

编码器网络E=\left \{ E_{1},E_{2} ,...,E_{v},...E_{V}\right \},对于每个视图,有M层独立的全连接网络和具有共享参数的N层全连接网络。独立层用于处理每个视图的不同特征维度。

2.多视图生成对抗模块

生成器:G=\left \{ G_{1} ,...G_{v},...G_{V}\right \},判别器:D=\left \{ D_{1},...D_{v},...D_{V} \right \}。多视图生成器网络与多视图编码器具有对称结构,它具有N层共享参数的全连接网络和每个视图的独立的M层全连接网络,这些网络能够生成与每个视图相对应的潜在表示的所有视觉重构样本。(重构样本由生成器生成)。判别器网络由V个全连接网络组成,每个判别器D_{v}由三个全连接层组成。D_{v}将鉴别结果反馈给生成器G_{v},以更新其参数。通过这种方式,判别器作为正则化器指导编码器网络的训练,以获得更好地嵌入表示的鲁棒性并有效的解决过拟合问题。

3.深度聚类模块

为了获得共享的潜在表示Z,该模型引入了一个加权自适应融合层FU,它自适应的将V个潜在表示融合成一个公共表示Z=f\left ( \left \{ Z^{v} \right \}_{v=1}^{V};\beta \right )。为了寻求一个适合聚类的潜在空间,又在网络中开发了一个独特的深度嵌入聚类层CU。嵌入的聚类层在每次迭代后包含新的聚类质心。用共享表示Z和聚类质心\left \{ U_{j} \right \}_{j=1}^{k}来获得当前的数据分布和目标数据分布。另用当前数据分布和目标数据分布的KL散度作为目标函数,迭代更新共享表示和聚类中心。

4.总体目标函数

AMVC的总损失函数包括四个部分:

1.自动编码器损失

通过最小化自动编码器损失来优化多视图编码器E,该损失由生成器生成的样本(重建样本)与真实样本之间的均方误差测量,即:

为了缓解均方误差可能导致重建结果模糊,无法对每个视图的数据分布进行建模的问题,采用对抗训练来生成更真实地结果,并进一步增强模型的泛化能力。

2. 生成对抗网络损失

生成器G不断学习每个视图中真实数据的概率分布。其目标是将潜在表示转换为每个视图的重构数据(重构数据为假数据)。判别器D用于判断输入的数据是否为真实数据。其损失可被表述为:

该损失包括两部分:生成样本的损失和真实样本的损失。这两部分损失相互作用,使得生成器G生成的样本越来越接近真实数据,同时分类器能够更准确地判断输入是否为真实数据。

3.分布一致性损失

自动编码器损失和生成对抗网络损失使我们的多视图生成器能够生成与真实样本更相似的假样本,这鼓励嵌入表示尽可能的包含原始特征信息。但是这两种损失不能保证编码的低维空间具有良好的聚类结构,为了寻求具有判别性的嵌入,在AMVC网络中封装了由KL散度测量的聚类损失,即分布一致性损失:

其中P_{ij}为目标分布的概率,q_{ij}表示样本i分配给集群j的概率,即软分配。

4.L1,2范数正则化

为了解决共同的潜在表示Z可能有大量冗余信息,可能会导致一些样本被错误聚类的问题,利用L1,2范数来约束共同的潜在表示特征矩阵,以学习更具有辨别力的表示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值