HAIS环境搭建

本文详细介绍了如何在Ubuntu18.04.6系统上,利用RTX3090显卡和CUDA11.7,以及特定版本的PyTorch和spconv库,成功搭建和编译HierarchicalAggregationfor3DInstanceSegmentation(HAIS)项目的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GitHub地址:GitHub - hustvl/HAIS: Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

我的配置:

Ubuntu 18.04.6

显卡:RTX3090

cuda:11.7

1) Environment

首先创建一个虚拟环境并激活

conda create -n hais python=3.7
conda activate hais

2) 克隆项目

git clone https://github.com/hustvl/HAIS.git --recursive

3) 安装依赖包

cd HAIS
pip install -r requirements.txt #注意把文档里面的第一行删掉,我们要自己指定torch版本
conda install -c bioconda google-sparsehash

注意根据你的显卡、cuda版本来安装pytorch,我这里用的是conda命令,我pip安装的最终无法运行训练。

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

4) 安装编译 spconv ,这一步应该是最容易出问题的。

  • spconv 1.0,兼容CUDA < 11和pytorch < 1.5,默认情况下已经在步骤2中递归地克隆到HAIS/lib/spconv中。对于更高版本的CUDA和pytorch,建议使用spconv 1.2。用spconv的这个分支替换HAIS/lib/spconv。

这里我的cuda版本11.7和pytorch1.8要求必须安装spconv1.2版本,于是要先执行git操作,替换掉原代码中的spconv文件夹。如果执意要用作者给出的1.0版本 编译会报错的。

git clone https://github.com/outsidercsy/spconv.git --recursive 
  • 安装依赖.
conda install libboost
conda install -c daleydeng gcc-5 # (optional, install gcc-5.4 in conda env)
  • 编译 spconv library.
cd HAIS/lib/spconv
python setup.py bdist_wheel
  • 安装生成的 .whl file.
cd HAIS/lib/spconv/dist
pip install {wheel_file_name}.whl

5) 编译额外的C++ and CUDA ops.

cd HAIS/lib/hais_ops
export CPLUS_INCLUDE_PATH={conda_env_path}/hais/include:$CPLUS_INCLUDE_PATH
python setup.py build_ext develop

{conda_env_path} is the location of the created conda environment, e.g., /anaconda3/envs.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值