集成学习(Ensemble learning)

#集成学习
集成学习主要思想:找到一些分类器,这些分类器与批彼此不同,然后再将其集合在一起。
Bagging
Bagging即套袋法,其算法过程如下:
A)从原始样本集中抽取训练集。每轮从原始样本集中使用Bootstraping的方法抽取n个训练样本(在训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。(k个训练集之间是相互独立的)
B)每次使用一个训练集得到一个模型,k个训练集共得到k个模型。(注:这里并没有具体的分类算法或回归方法,我们可以根据具体问题采用不同的分类或回归方法,如决策树、感知器等)
C)对分类问题:将上步得到的k个模型采用投票的方式得到分类结果;对回归问题,计算上述模型的均值作为最后的结果。(所有模型的重要性相同)
在这里插入图片描述
model变复杂时,error会先降后升,这是因为简单的model(underfitting)有小的variance、大的bias, 而复杂的model(overfitting)有大的variance、小的bias。如果模型很复杂,可以训练出多个复杂的模型,取平均,以减小variance,提高泛化能力。
实际上,这便是bagging。在模型比较复杂(variance大、bias小)、比较容易overfitting时才用Bagging。其实NN不是很容易overfitting,而是卡在训练集上得不到好的结果,而像decision tree就很容易在训练集上很低(0%)的错误率、容易overfitting。
对decision tree做bagging就是random forest
在这里插入图片描述
在这里插入图片描述
随机森林的做法:若是对训练数据重采样,那么得到的各棵树太像了。所以在每次分裂节点时随机限制哪些feature可用哪些feature不可用,避免各棵树长得太像。
Out-of-bag方法:假设现在有训练数据x1, x2, x3, x4,每次采样出部分数据训练function,如用x1, x2训练f1,用x3, x4训练f2,用x1, x3训练f3,用x2, x4训练f4。这样,x1没有被用于训练f2, f4,所以可用f2, f4组成随机森林来测试x1, 其余x2, x3, x4同理。
Out-of-bag (OOB) error是对测试集上错误率的一个很好的估计。
之前要切出验证集才知道在测试集上的错误率,而用OOB就不用验证集了,因为部分训练数据没有被包含在训练中,它们可以拿来当做验证集。
在这里插入图片描述
在这里插入图片描述
Bagging并不是为了提升在训练集上的performance。在初音这个任务上并没有什么训练、测试,目标是看有多能拟合初音函数,与你的函数的泛化特性无关。所以现在加上随机森林并不能更加拟合初音函数,原来深度为5的单棵决策树不能拟合初音函数,那么加上随机森林还是不能拟合初音函数。但是Bagging可以让variance比较小,得到的function比较平滑。
Boosting
其主要思想是将弱分类器组装成一个强分类器。在PAC(概率近似正确)学习框架下,则一定可以将弱分类器组装成一个强分类器。
通过提高那些在前一轮被弱分类器分错样例的权值,减小前一轮分对样例的权值,来使得分类器对误分的数据有较好的效果。
通过加法模型将弱分类器进行线性组合,比如AdaBoost通过加权多数表决的方式,即增大错误率小的分类器的权值,同时减小错误率较大的分类器的权值。
而提升树通过拟合残差的方式逐步减小残差,将每一步生成的模型叠加得到最终模型。
如果分类器在训练数据上有大于50%的正确率,那么在Boosting之后会得到100%的正确率。
在不同训练数据上训练就会得到不同的分类器,不同的训练数据一般通过re-weighting training data得到,实际上修改了目标函数。
Adaboost的做法就是,训练好f1后,调整training set的weight,让f1在新的training set上错误率达到50%, 再用新的training set训练f2……
调整training set的weight 的方法是,对f1正确分类的example, 其weight除以一个大于1的值;对f1错误分类的example, 其weight乘以相同的值,这个值可以计算出来。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在aggregate classifiers时,用uniform weight的方式比较不好,因为不同的分类器有强弱之别。

下面证明随着TT 的增大,H(x)H(x) 会在训练数据上取得越来越小的错误率。
首先给出训练错误率的upper-bound,然后证明这个upper-bound恰好等于1/N*ZT+1,之后往证T↑,ZT+1↓T↑,ZT+1↓
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Gradient Boosting
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
stacked
stacked 产生方法是一种截然不同的组合多个模型的方法,它讲的是组合学习器的概念,但是使用的相对于bagging和boosting较少,它不像bagging和boosting,而是组合不同的模型,具体的过程如下:
1.划分训练数据集为两个不相交的集合。
2. 在第一个集合上训练多个学习器。
3. 在第二个集合上测试这几个学习器
4. 把第三步得到的预测结果作为输入,把正确的回应作为输出,训练一个高层学习器,
总结
1)Bagging + 决策树 = 随机森林
2)AdaBoost + 决策树 = 提升树
3)Gradient Boosting + 决策树 = GBDT
Bagging和Boosting的区别:
1)样本选择上:
Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。
Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。
2)样例权重:
Bagging:使用均匀取样,每个样例的权重相等
Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。
3)预测函数:
Bagging:所有预测函数的权重相等。
Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重。
4)并行计算:
Bagging:各个预测函数可以并行生成
Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值