矩阵变换向量的解释

本文探讨矩阵在图形学中的作用,解释为何乘以矩阵能实现坐标系变换。通过实例展示了矩阵如何将坐标从一个坐标系转换到另一个坐标系,帮助读者深入理解矩阵变换的原理。
摘要由CSDN通过智能技术生成

这篇文章主要是记录自己学习的过程,文章内容参考自《3D数学基础:图形与游戏开发》,如有不对的地方,烦请指出,交流进行更改。

矩阵在图形学中几乎无处不在,投影矩阵、视图矩阵等这一系列包含矩阵的名词几乎耳熟能详。一个在物体坐标系的坐标乘以model矩阵后就变换到了世界坐标系,一个在世界坐标系的坐标乘以view矩阵就变换到了摄像机坐标系,这些变换看起来很合理。但是追根溯源,为什么乘以一个矩阵就可以进行坐标系的变换呢?

这篇文章主要对上述问题进行介绍和说明。理解了矩阵可以对坐标进行变换的原因后,将对矩阵的意义有更深入的认识和了解。

这里用行向量来表示坐标,pqr分别用来表示为指向x,y,z轴正方向的单位向量。
现在有一个坐标点A(1,2,3),用向量表示为A=[1 2 3]。
其中,向量A可以分解成如下形式:A=1[1 0 0]+2[0 1 0]+3[0 0 1]=1p+2q+3r

而等式1p+2q+3r可以解释为在x轴方向位移1个单位,y轴方向位移2个单位,z轴方向位移3个单位。
进一步将等式1p+2q+3r进行变形可以得到:
1p+2q+3r=
[ 1 p x + 2 q x + 3 r x 1 p y + 2 q y + 3 r y 1 p z + 2 q z + 3 r z ] = [ 1 2 3 ] [ p x p y p z q x q y q z r x r y r z ] \left[ \begin{matrix} 1px+2qx+3rx & 1py+2qy+3ry & 1pz+2qz+3rz \\ \end{matrix} \right] = \left[ \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right] \left[ \begin{matrix} px & py & pz \\ qx & qy & qz \\ rx & ry & rz \end{matrix} \right] [1px+2qx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值