牛客小白月赛 5

H 最小公倍数

#include <iostream>
using namespace std;
typedef unsigned long long ll;
ll gcd(ll a, ll b)
{
    if(!b) return a;
    else
        return gcd(b,a%b);
}
int main()
{
    ll a,b;
    cin >> a >> b;
    ll tmp = gcd(a,b);
    a /= tmp;
    b /= tmp;
    cout << (a*b)*tmp<<endl;
    return 0;
}

D
在这里插入图片描述

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<string>
#include<string.h>
#include<queue>
using namespace std;
#define N 1005
#define inf 0x7ffff
#define ll long long
int main()
{
    ll n;
    cin>>n;
    ll sum=0;ll ans=0;
    for(int i=1;i<=n;i++)
    {
        ll an=i;
        while(an%5==0)
        {
            sum++;
            an=an/5;
        }
        ans+=sum;
    }
    cout<<ans<<endl;
    return 0;
}

A 容斥原理

在这里插入图片描述


#include <stdio.h>
#define LL long long
const int maxn =25;
LL l,r,k;
LL a[maxn];
   
LL sum=0;
void dfs(LL x,LL now,LL c)
{
    if(x>r) return;
    if(c&1){
        sum+=r/x-(l-1)/x;
             }
    else
    {
        sum-=r/x-(l-1)/x;
    }
    for(LL i=now+1;i<=k;i++)
    {
        dfs(x*a[i],i,c+1);
    }
}
   
int main()
{
    while(~scanf("%llu%llu%llu",&l,&r,&k)){
        sum=0;
        for(LL i=1;i<=k;i++)
            scanf("%llu",&a[i]);
        for(LL i=1;i<=k;i++)
            dfs(a[i],i,1);
        printf("%llu\n",(r-l+1)-sum);
    }
}

C
题目

#include<math.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define ll long long
ll f[100],x,m,k;
int a[100]={-1,1,0,0,2,10,4,40,92,352,724,2680,14200,73712,365596};
int main(void)
{
    bool flag=0;
    f[1]=f[2]=1;
    for(int i=3;i<=100;i++)
        f[i]=f[i-1]+f[i-2];
    scanf("%lld%lld",&x,&m);
    for(int i=1;i<=80;i++)
        if(f[i]==x)
            flag=1;
    if(flag)
    {
        ll ans=1e18,sm1,sm2;
        for(int i=2;i<=100;i++)
        {  
            if(m%i) continue;
            sm1=sm2=0;
            while(m%i==0) sm1++,m/=i;
            ll tmp=x;
            while(tmp)
                sm2+=tmp/i,tmp/=i;
            ans=min(ans,sm2/sm1);
        }
        printf("%lld\n",ans);
    }
    else
    {
        ll z=x%min(13ll,m+1)+1;
        printf("%d\n",a[z]);
    }
    return 0;
}

求n 的阶乘在 m 进制下末尾 0 的个数

这个里面 n 的阶乘可以分解成多少个 prime[i] 的个数的求解 嗯QAQ 很棒

void dfs(int x) {
    if(x == n + 1) {
        ans ++;
        return ;
    }
    rep(i,1,n) {
        if(vis[1][i] == 0 && vis[2][x+i+n] == 0 && vis[3][x-i+n] == 0) {
            vis[1][i] = vis[2][x+i+n] = vis[3][x-i+n] = 1;
            dfs(x + 1);
            vis[1][i] = vis[2][x+i+n] = vis[3][x-i+n] = 0;
        }
    }
}



这个求八皇后的代码也挺好的呀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值