在化简布尔代数时有时需要补充项来化简,例如证明:
A
+
A
ˉ
B
=
A
+
B
A + \bar{A}B = A + B
A+AˉB=A+B
证明过程如下:
A
+
A
ˉ
B
=
A
(
1
+
B
)
+
A
ˉ
B
=
A
+
A
B
+
A
ˉ
B
=
A
+
(
A
+
A
ˉ
)
B
=
A
+
B
\begin{aligned} A + \bar{A}B &= A\textcolor{FF8F80}{(1+B)} + \bar{A}B\\ &= A + AB + \bar{A}B \\ &= A + \textcolor{FF8F80}{(A+\bar{A})}B \\ &= A + B \end{aligned}
A+AˉB=A(1+B)+AˉB=A+AB+AˉB=A+(A+Aˉ)B=A+B
证毕。
证明布尔等式A+A‘B=A+B
最新推荐文章于 2023-10-08 23:50:27 发布