python手写数字的识别

本文介绍了使用Python进行手写数字识别的小程序,数据来源于Kaggle的CSV文件,通过pandas库处理,利用KNN算法进行识别。在Kaggle上提交后的准确率为0.96600,有望通过优化算法提升准确率。
摘要由CSDN通过智能技术生成

这是我的学习AI的第一个小程序:手写数字的识别,所用的数据集是从Kaggle上下载的csv文件,用python的pandas库读取文件,所以难度降低类很多,我不用再去处理图片;至于算法,用了KNN算法,代码如下:

#base.py
from operator import itemgetter
from numpy import tile

def classfy(intX, dataSet, labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(intX,(dataSetSize,1))-dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值