树状数组
树状数组的tree[i]维护的是前面一段区间的状态,这个视题意而定,比如题目要求一段区间的和,那么树状数组tree[i]表示前面一段区间的和,如果题目要求一段区间的最大值,那么树状数组tree[i]表示前面一段区间的最大值。那么前面的一段区间是多少的,就是将i转换成二进制编码时,第一个1出现是的长度。11101000,它维护的区间长度就是1000的大小,为8.
求维护区间长度的具体代码,也是树状数组的核心代码
int lowbit(int x)
{
return x&(-x);
}
更新第x位后,想要遍历i维护区间的其他值的小技巧,也就是便利整个lowbit区间。
这里以tree维护区间最大值为例举例子
for(int i=1;i<lowbit(x);i<<=1)
{
tree[x]=max(tree[x],tree[x-i]);
}
void update(int x)
{
for(;x<=n;x+=lowbit(x))
{
tree[x]=a[x];
for(int i=1;i<lowbit(x);i<<=1)
{
tree[x]=max(tree[x],tree[x-i]);
}
}
}
想要求l到r区间的最大值从上想下不断减去lowbit,如果超l的范围,那么向下移动一位,继续减去lowbit的值,知道r<l结束。
int query(int l,int r)
{
int ans=0;
while(r>=l)
{
for(;r-lowbit(r)>=l;r-=lowbit(r))
ans=max(ans,tree[r]);
ans=max(ans,a[r]);
r--;
}
return ans;
}
这里一定要从r不断向下减去lowbit,因为如果从 l不断向上加lowbit,那么,l+lowibt后得到的值会包含l没有加lowbit之前的这样会出现重复计算,有些时候程序会出bug.
这是我之前写的区间求和的代码,典型的重复加的错误
ll query(int l,int r)
{
ll ans=0;
while(l<=r)
{
for(;l+lowbit(l)<=r;l+=lowbit(l))
{
int up=l+lowbit(l);
ans+=tree[up];
}
if(l>r) break;
ans+=a[l];
l++;
}
return ans;
}
下面是维护区间和,单点更新和区间查询的代码
void update(int pos,int e)
{
//这里的b数组不是存原来数字的数组,这里是为了给以后修改,加或者减把数组也//修改了,但是这里如果写原来的a数组的话,在创建树状数组的时候就会把数组a//就给修改了,所以我又新开了一个数组。
b[pos]+=e;
for(int i=pos;i<=n;i+=lowbit(i))
{
tree[i]+=e;
}
}
int query(int l,int r)
{
int ans=0;
while(l<=r)
{
for(;r-lowbit(r)>=l;r-=lowbit(r))
{
ans+=tree[r];
}
ans+=a[r];
r--;
}
return ans;
}
给道例题
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5;
int a[maxn],tree[maxn],b[maxn];
int n;
int lowbit(int x)
{
return x&(-x);
}
void update(int pos,int e)
{
a[pos]+=e;
for(int i=pos;i<=n;i+=lowbit(i))
{
tree[i]+=e;
}
}
ll query(int l,int r)
{
ll ans=0;
while(l<=r)
{
for(;r-lowbit(r)>=l;r-=lowbit(r))
{
ans+=tree[r];
}
ans+=a[r];
r--;
}
return ans;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int t;
cin>>t;
int num=0;
while(t--)
{
cout<<"Case "<<++num<<":"<<endl;
fill(a,a+maxn,0);
fill(b,b+maxn,0);
fill(tree,tree+maxn,0);
cin>>n;
for(int i=1;i<=n;i++){
cin>>b[i];
update(i,b[i]);
}
string s;
while(cin>>s)
{
if(s=="End") break;
if(s=="Add")
{
int x,y;
cin>>x>>y;
update(x,y);
}
else if(s=="Sub")
{
int x,y;
cin>>x>>y;
update(x,-y);
}
else
{
int x,y;
cin>>x>>y;
cout<<query(x,y)<<endl;
}
}
}
}