这个题归类在搜索里面,实际上用动归也可以做。
1.BFS
就正常的p-1,p+1,2p的BFS。再复习一遍模板
1.标记此处,已经遍历过
2.判断是否退出
3.进行下一步遍历
1.判断越界。越界的条件必须要用数字判,否则RE
2.判断是否遍历过。
3.push
BFS代码如下
#include<cstdlib>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
struct node{
int pos;
int ct;
node(int p,int ctt):pos(p),ct(ctt){}
};
bool view[100000+5]={false};
int bfs(int n,int k){
queue <node> q;
q.push(node(n,0));
while(!q.empty()){
struct node u=q.front();
q.pop();
int p=u.pos;
view[p]=true;
if(p<0||p>100000) continue;
if(p==k){
return u.ct;
}
if(p<100001&&!view[p+1]){
q.push(node(p+1,u.ct+1));
}
if(p>0&&!view[p-1]){
q.push(node(p-1,u.ct+1));
}
if(p<50001&&!view[p*2]){
q.push(node(2*p,u.ct+1));
}
}
return -1;
}
int main(void){
int N,K;
scanf("%d %d",&N,&K);
printf("%d",bfs(N,K));
}
2.动归
考虑四个状态。p点本身,p-1的最优+1,p+1的最优+1,p/2的最优+1(对于偶数的点)
首先,以N为中心,i为从0到K的变量。则从i到N的最普通的方法就是进行平移,所以给初始DP数组赋值为距离。
接下来,对于奇数的,只考虑前3个。由于p+1的最优只有可能是dp[i+1](由于从小到大遍历,此时还没有变化,是最基本的值。)和dp[(i+1)/2]+1,所以将这两个都考虑进来。又由于dp[i+1]=dp[i]+1,所以不再考虑dp[i+1]。同时,也不考虑dp[p/2]+1。
对于偶数,比上述的多考虑一个dp[p/2]+1就完事了。
综上,这个题的DP是考虑比i小的都已经最优了,所以比i大的要多费一点脑筋。
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
int N,K;
const int MAX = 100005;
int dp[MAX];
int main(){
cin>>N>>K;
for(int i = 0;i <= K;i++){
dp[i] = abs((int)(N - i));
}
for(int i=N+1;i<=K;i++){
if(i & 1){//奇数
dp[i]=min(dp[i],dp[(i+1)/2]+2);
dp[i]=min(dp[i],dp[i-1]+1);
//由于此时没有更新i+1的东西,所以dp[i+1]-1=dp[i]
}
else{
dp[i]=min(dp[i],dp[i/2]+1);
dp[i]=min(dp[i],dp[i-1]+1);
dp[i]=min(dp[i],dp[(i+1)/2]+2);
}
}
cout<<dp[K]<<endl;
return 0;
}