【leetcode】374.猜数字大小 (二分查找多种方法实现!开拓视野)

374. 猜数字大小

我们正在玩一个猜数字游戏。 游戏规则如下:
我从 1n 选择一个数字。 你需要猜我选择了哪个数字。
每次你猜错了,我会告诉你这个数字是大了还是小了。
你调用一个预先定义好的接口 guess(int num),它会返回 3 个可能的结果(-110):

-1 : 我的数字比较小
 1 : 我的数字比较大
 0 : 恭喜!你猜对了!

示例 :

输入: n = 10, pick = 6
输出: 6

分析

方法 1:暴力

我们从 1 到 n-1 检查每一个数字,并调用 guessguess 函数。如果输入数字返回 0 说明它是答案。

  • Java
/* The guess API is defined in the parent class GuessGame.
   @param num, your guess
   @return -1 if my number is lower, 1 if my number is higher, otherwise return 0
      int guess(int num); */

public class Solution extends GuessGame {
    public int guessNumber(int n) {
        for (int i = 1; i < n; i++)
            if (guess(i) == 0)
                return i;
        return n;
    }
}

复杂度分析

  • 时间复杂度: O(n) 。我们从 1 到 n 扫描检查所有的数字。
  • 空间复杂度: O(1) 。不需要使用额外空间。
方法 2:使用二分查找

参考代码

  • 注意:以下虽然我用两种语言作答,但是它们的逻辑上还有一点点区别,那就是在取中位数的时候,答案在上面那篇题解中。

  • Python

def guess(num):
    pass


class Solution(object):
    def guessNumber(self, n):
        left = 1
        right = n
        while left < right:
            # mid = left + (right - left) // 2
            mid = (left + right) >> 1
            if guess(mid) == 1:
                # 中位数比猜的数小,因此比中位数小的数包括中位数都不是目标元素
                left = mid + 1
            else:
                right = mid
        # 最后剩下的数一定是所求,无需后处理
        return left
  • Java
class GuessGame {

    private static final int NUM = 6;

    int guess(int num) {
        if (num == NUM) {
            return 0;
        } else if (num < NUM) {
            return -1;
        }
        return 1;
    }
}


public class Solution extends GuessGame {

    public int guessNumber(int n) {
        int left = 1;
        int right = n;
        while (left < right) {
            // int mid = left + (right - left + 1) / 2;
            int mid = (left + right + 1) >>> 1;
            int guessNum = guess(mid);
            if (guessNum == -1) {
                // 中位数比猜的数大,因此比中位数大的数包括中位数都不是目标元素
                right = mid - 1;
            } else {
                left = mid;
            }
        }
        // 最后剩下的数一定是所求,无需后处理
        return left;
    }


    public static void main(String[] args) {
        Solution solution = new Solution();
        int n = 10;
        int guessNumber = solution.guessNumber(n);
        System.out.println(guessNumber);
    }
}

以上是本题题解,以下才是本文真正想说的,你应该已经注意到了,上面的示例代码中,Python 代码中的 mid = left + (right - left) // 2 和 Java 代码中的 int mid = left + (right - left + 1) / 2; 都被我注释掉了,不是因为它们不正确,而是因为它们不够好,下面就来具体说说。

1、最早学习二分法的时候,写中位数的索引是这样的:

Python 代码:

mid = (left + right) // 2

Java 代码:

int mid = (left + right) / 2;

2、后来被告知在 leftright 很大的时候,left + right 会发生整型溢出,变成负数,这是一个 bug 得改!

于是我们写成:

Python 代码:

mid = left + (right - left) // 2

Java 代码:

int mid = left + (right - left) / 2;

然后又被告知 mid = left + (right - left) // 2right 很大、 left 是负数且很小的时候, right - left 也有可能超过 int 类型能表示的最大值,只不过一般情况下 leftright 表示的是数组索引值,left 是非负数,因此 right - left 溢出的可能性很小。

3、最后,在 Java 的 JDK 的 CollectionsArrays 提供的 binarySearch 方法里看到了,中位数是这样取的:

int mid = (low + high) >>> 1;

怎么又变成 + 了,一头雾水啊,会整型溢出吗?后来查了查资料,有可能会整型溢出的,不过结果依然正确。下面是原因:

left + right 在发生整型溢出以后,会变成负数,此时如果除以 22 ,mid 是一个负数,但是经过无符号右移,可以得到在不溢出的情况下正确的结果。

首先解释“无符号右移”,在 Java 中,无符号右移运算符 >>> 和右移运算符 >> 的区别如下:

  • 右移运算符 >> 在右移时,丢弃右边指定位数,左边补上符号位;
  • 无符号右移运算符 >>> 在右移时,丢弃右边指定位数,左边补上 00,也就是说,对于正数来说,二者一样,而负数通过 >>> 后能变成正数。

了解了这一点,就能够理解 Java 中用 int mid = (low + high) >>> 1; 的原因了,关键不在 + ,而是“无符号右移”,在 Java 的 CollectionsArrays 提供的 binarySearch 方法里,lowhigh 都表示索引值,它们都是非负数,即使相加以后整型溢出,结果还是正确的,“位运算”本身就比其它运算符快,因此使用 + 和“无符号右移”可以说是既快又好的做法。

如果你用 Java 写的话,不妨做下面的试验:

+ 和除法,不能通过,提示也很清楚了。

image.png

如果你用 Python 的话,就可以过,这是因为:当 left + right 很大的时候,Python 就自动帮你转成 long 类型了,因此结果也不会错。

image.png

总结:

1、int mid = (left + right) / 2; 是初级写法,是有 bug 的;

2、int mid = left + (right - left) / 2; 是正确的写法,说明你考虑到了整型溢出的风险;

3、int mid = (low + high) >>> 1; 首先肯定是正确的写法,其实也是一个装 ❌ 的写法,理由上面已经叙述过了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值