给定一个正整数数列,和正整数 p,设这个数列中的最大值是 M,最小值是 m,如果 M≤mp,则称这个数列是完美数列。
现在给定参数 p 和一些正整数,请你从中选择尽可能多的数构成一个完美数列。
输入格式:
输入第一行给出两个正整数 N 和 p,其中 N(≤105)是输入的正整数的个数,p(≤109)是给定的参数。第二行给出 N 个正整数,每个数不超过 109。
输出格式:
在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。
输入样例:
10 8
2 3 20 4 5 1 6 7 8 9
输出样例:
8
法一:
仿照动态规划的思想使用双指针处理。数据列入vec数组中,然后从小到大排序,让i指向最小的数。当满足vec[i] * p >= vec[j]
的时候j一直往前走直到vec[i] * p < vec[j]
,此时记录这段数列的个数,然后让i自增直到满足vec[i] * p >= vec[j]
,再重复上述操作。期间用ans记录数列中最大的个数
注意:用long类型,否则测试点5无法通过
#include <iostream>
#include <cctype>
#include <string>
#include <map>
#include <vector>
#include <algorithm>
using namespace std;
long max(long a, long b);
int main()
{
long n, p, ans = 0;
cin >> n >> p;
vector<long> vec(n);
for (long i = 0; i < n; i++)
cin >> vec[i];
sort(vec.begin(), vec.end());
for (long i = 0, j = 0; j < n;)
{
if (vec[i] * p >= vec[j]) //如果满足条件,j递增
{
j++;
ans = max(ans, j - i); //ans记录最大的长度
}
else
i++; //不满足则让i递增
}
cout << ans;
system("pause");
return 0;
}
long max(long a, long b)
{
return a > b ? a : b;
}
法二:
思路:先列入数组中,并将数组按从小到大排序。然后从头嵌套两个for循环,i从0开始,j从i开始一直前移,每次移动都判断是否符合完美数列条件。代码如下,但是,这个代码最后两个样例会出错!
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int main()
{
int N = 0, p = 0, max_num = 0;
cin >> N >> p;
vector<int> vec(N);
for (int i = 0; i < N; i++) cin>> vec[i];
sort(vec.begin(), vec.end());
for (int i = 0; i < vec.size(); i++)
{
for (int j = i; j < vec.size(); j++)
{
if (vec[i] * p >= vec[j])
max_num = max(max_num, j - i + 1);
else break;
}
}
cout << max_num;
return 0;
}
分析:最后一个样例会出错,倒数第二个样例会超时。分析题目可知p的大小小于等于109,而int类型的最大值也要小于109。所以会出错,应将int改为long long。
而超时则可以优化算法来解决。假设有给样例:
p = 8,数列:2 3 10 11 12 4 5 1 6 7 8 9
我们排序后得到1 2 3 4 5 6 7 8 9 10 11 12,在i等于1时,j前移到8得出max_num为8。再往前移,此时因为9 > 1 * 8,所以j到9时最大的个数是8。接着i从2开始,问题出现了,这时j需要从i开始吗?因为之前i在1的时候就已经判断过1 ~ 9之间所有的数字肯定都是小于等于1*8的,所以不需要重新再判断,而j就直接从9开始进行判断。优化完成。
满分代码如下:
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <vector>
using namespace std;
int main()
{
int N = 0, max_num = 0;
long long p = 0LL;
cin >> N >> p;
vector<int> vec(N);
for (int i = 0; i < N; i++) cin>> vec[i];
sort(vec.begin(), vec.end());
for (int i = 0; i < vec.size(); i++)
{
for (int j = i + max_num; j < vec.size(); j++)
{
if (vec[i] * p >= vec[j])
max_num = max(max_num, j - i + 1);
else break;
}
}
cout << max_num;
system("pause");
return 0;
}