左程云算法初级班 第三课
- 用数组结构实现大小固定的队列和栈
- 数组实现栈:设置一个指针指向栈顶元素(上图中的size);当压入或者弹出元素时,改变指针指向;指针指向数组最后一个元素时,代表栈已被压满。
- 数组实现队列:设置两个指针、一个指向队列第一个元素(上图中的first),一个指向队列最后一个元素(上图中的last);同时设置一个size记录队列中元素个数;每当队列中push入元素时,last往后移动,并将新的元素存入该位置,此时size++,若已经移到数组最末端且队列中元素个数少于数组长度时,last移动到数组首位;每当队列中poll出元素时,将first位置元素输出,并将first后移,此时size–,若已经移到数组最末端并且队列中元素个数大于0且少于数组长度时,first移动到数组首位;
- 代码:
public static class ArrayStack {
private Integer[] arr;
private Integer size;
public ArrayStack(int initSize) {
if (initSize < 0) {
throw new IllegalArgumentException("The init size is less than 0");
}
arr = new Integer[initSize];
size = 0;
}
public Integer peek() {
if (size == 0) {
return null;
}
return arr[size - 1];
}
public void push(int obj) {
if (size == arr.length) {
throw new ArrayIndexOutOfBoundsException("The queue is full");
}
arr[size++] = obj;
}
public Integer pop() {
if (size == 0) {
throw new ArrayIndexOutOfBoundsException("The queue is empty");
}
return arr[--size];
}
}
public static class ArrayQueue {
private Integer[] arr;
private Integer size;
private Integer first;
private Integer last;
public ArrayQueue(int initSize) {
if (initSize < 0) {
throw new IllegalArgumentException("The init size is less than 0");
}
arr = new Integer[initSize];
size = 0;
first = 0;
last = 0;
}
public Integer peek() {
if (size == 0) {
return null;
}
return arr[first];
}
public void push(int obj) {
if (size == arr.length) {
throw new ArrayIndexOutOfBoundsException("The queue is full");
}
size++;
arr[last] = obj;
last = last == arr.length - 1 ? 0 : last + 1;
}
public Integer poll() {
if (size == 0) {
throw new ArrayIndexOutOfBoundsException("The queue is empty");
}
size--;
int tmp = first;
first = first == arr.length - 1 ? 0 : first + 1;
return arr[tmp];
}
}
- 实现一个特殊的栈,在实现栈的基本功能的基础上,再实现返回栈中最小元素的操作。
【要求】
1.pop、push、getMin操作的时间复杂度都是O(1)。
2.设计的栈类型可以使用现成的栈结构。
- 方案一:准备两个栈,一个为基本栈,实现pop,push,另外一个存放最小值;在基本栈push时,若被push的值小于或者等于最小值栈中的最小值时,则将该值push进最小值栈;当基本栈pop时,若被pop的值等于最小值栈的栈顶元素时,最小值栈pop;栈中最小元素为最小值栈的栈顶元素;
- 方案二: 准备两个栈,一个为基本栈,另外一个存放最小值;当基本栈push时,若被push的元素大于或等于最小值栈的栈顶元素,则最小值栈将自己的栈顶元素再push到栈顶一次,若被push的元素小于最小值栈的栈顶元素,则将该元素push到最小值栈;当基本栈pop时最小值栈pop;栈中最小元素为最小值栈的栈顶元素。
- 代码:
public static class MyStack1 {
private Stack<Integer> stackData;
private Stack<Integer> stackMin;
public MyStack1() {
this.stackData = new Stack<Integer>();
this.stackMin = new Stack<Integer>();
}
public void push(int newNum) {
if (this.stackMin.isEmpty()) {
this.stackMin.push(newNum);
} else if (newNum <= this.getmin()) {
this.stackMin.push(newNum);
}
this.stackData.push(newNum);
}
public int pop() {
if (this.stackData.isEmpty()) {
throw new RuntimeException("Your stack is empty.");
}
int value = this.stackData.pop();
if (value == this.getmipushn()) {
this.stackMin.pop();
}
return value;
}
public int getmin() {
if (this.stackMin.isEmpty()) {
throw new RuntimeException("Your stack is empty.");
}
return this.stackMin.peek();
}
}
public static class MyStack2 {
private Stack<Integer> stackData;
private Stack<Integer> stackMin;
public MyStack2() {
this.stackData = new Stack<Integer>();
this.stackMin = new Stack<Integer>();
}
public void push(int newNum) {
if (this.stackMin.isEmpty()) {
this.stackMin.push(newNum);
} else if (newNum < this.getmin()) {
this.stackMin.push(newNum);
} else {
int newMin = this.stackMin.peek();
this.stackMin.push(newMin);
}
this.stackData.push(newNum);
}
public int pop() {
if (this.stackData.isEmpty()) {
throw new RuntimeException("Your stack is empty.");
}
this.stackMin.pop();
return this.stackData.pop();
}
public int getmin() {
if (this.stackMin.isEmpty()) {
throw new RuntimeException("Your stack is empty.");
}
return this.stackMin.peek();
}
}
- 如何仅用队列结构实现栈结构?如何仅用栈结构实现队列结构?
- 队列实现栈:使用两个队列实现栈结构,一个队列为数据队列queue,一个数列为辅助队列help;当栈push时,queue进行add;当栈pop时,将queue中的元素依次poll并add入help,直到queue中仅剩一个元素,这是将这个元素poll出来,并将help与queue交换;当栈peek时,类似于push时的操作,只不过将queue中仅剩的一个元素poll出来后,要将其add入help;
- 代码:
public static class TwoQueuesStack { private Queue<Integer> queue; private Queue<Integer> help; public TwoQueuesStack() { queue = new LinkedList<Integer>(); help = new LinkedList<Integer>(); } public void push(int pushInt) { queue.add(pushInt); } public int peek() { if (queue.isEmpty()) { throw new RuntimeException("Stack is empty!"); } while (queue.size() != 1) { help.add(queue.poll()); } int res = queue.poll(); help.add(res); swap(); return res; } public int pop() { if (queue.isEmpty()) { throw new RuntimeException("Stack is empty!"); } while (queue.size() > 1) { help.add(queue.poll()); } int res = queue.poll(); swap(); return res; } private void swap() { Queue<Integer> tmp = help; help = queue; queue = tmp; } }
- 栈实现队列:使用两个栈实现队列,一个栈stackPush进行push操作,一个栈stackPop进行pop操作;当队列push时,将元素push到stackPush;当队列poll时,若stackPop为空,则将stackPush中的所有元素全部倒入stackPop中,然后stackPop进行pop,若stackPop不为空,则直接stackPop进行pop;当队列peek时,若stackPop为空,则将stackPush中的所有元素全部倒入stackPop中,然后stackPop进行peek,若stackPop不为空,则直接stackPop进行peek。
- 代码:
public static class TwoStacksQueue { private Stack<Integer> stackPush; private Stack<Integer> stackPop; public TwoStacksQueue() { stackPush = new Stack<Integer>(); stackPop = new Stack<Integer>(); } public void push(int pushInt) { stackPush.push(pushInt); } public int poll() { if (stackPop.empty() && stackPush.empty()) { throw new RuntimeException("Queue is empty!"); } else if (stackPop.empty()) { while (!stackPush.empty()) { stackPop.push(stackPush.pop()); } } return stackPop.pop(); } public int peek() { if (stackPop.empty() && stackPush.empty()) { throw new RuntimeException("Queue is empty!"); } else if (stackPop.empty()) { while (!stackPush.empty()) { stackPop.push(stackPush.pop()); } } return stackPop.peek(); } }
- 猫狗队列 【题目】 宠物、狗和猫的类如下:
public class Pet {
private String type;
public Pet(String type) { this.type = type; }
public String getPetType() { return this.type; }
}
public class Dog extends Pet {
public Dog() { super(“dog”); }
}
public class Cat extends Pet {
public Cat() { super(“cat”); }
}
实现一种狗猫队列的结构,要求如下: 用户可以调用add方法将cat类或dog类的
实例放入队列中; 用户可以调用pollAll方法,将队列中所有的实例按照进队列
的先后顺序依次弹出; 用户可以调用pollDog方法,将队列中dog类的实例按照
进队列的先后顺序依次弹出; 用户可以调用pollCat方法,将队列中cat类的实
例按照进队列的先后顺序依次弹出; 用户可以调用isEmpty方法,检查队列中是
否还有dog或cat的实例; 用户可以调用isDogEmpty方法,检查队列中是否有dog
类的实例; 用户可以调用isCatEmpty方法,检查队列中是否有cat类的实例。
- 定义一个类(PetEnterQueue),属性为pet和count。其中count为时间戳,用来区分Dog与Cat进入队列的顺序;
- 当猫狗队列(DogCatQueue)中进入Dog时,将带有时间戳的PetEnterQueue(其中装的pet为Dog)放入DogCatQueue中的dogQ;当猫狗队列(DogCatQueue)中进入Cat时,将带有时间戳的PetEnterQueue(其中装的pet为Cat)放入DogCatQueue中的catQ;在pollAll操作时,根据队列中PetEnterQueue的时间戳count依次从dogQ和catQ中poll;在pollDog操作时,从dogQ中poll;在pollCat操作时,从catQ中poll;isEmpty方法、isDogEmpty方法、isCatEmpty方法用相同原理实现。
- 代码:
public class Code_04_DogCatQueue {
public static class Pet {
private String type;
public Pet(String type) {
this.type = type;
}
public String getPetType() {
return this.type;
}
}
public static class Dog extends Pet {
public Dog() {
super("dog");
}
}
public static class Cat extends Pet {
public Cat() {
super("cat");
}
}
public static class PetEnterQueue {
private Pet pet;
private long count;
public PetEnterQueue(Pet pet, long count) {
this.pet = pet;
this.count = count;
}
public Pet getPet() {
return this.pet;
}
public long getCount() {
return this.count;
}
public String getEnterPetType() {
return this.pet.getPetType();
}
}
public static class DogCatQueue {
private Queue<PetEnterQueue> dogQ;
private Queue<PetEnterQueue> catQ;
private long count;
public DogCatQueue() {
this.dogQ = new LinkedList<PetEnterQueue>();
this.catQ = new LinkedList<PetEnterQueue>();
this.count = 0;
}
public void add(Pet pet) {
if (pet.getPetType().equals("dog")) {
this.dogQ.add(new PetEnterQueue(pet, this.count++));
} else if (pet.getPetType().equals("cat")) {
this.catQ.add(new PetEnterQueue(pet, this.count++));
} else {
throw new RuntimeException("err, not dog or cat");
}
}
public Pet pollAll() {
if (!this.dogQ.isEmpty() && !this.catQ.isEmpty()) {
if (this.dogQ.peek().getCount() < this.catQ.peek().getCount()) {
return this.dogQ.poll().getPet();
} else {
return this.catQ.poll().getPet();
}
} else if (!this.dogQ.isEmpty()) {
return this.dogQ.poll().getPet();
} else if (!this.catQ.isEmpty()) {
return this.catQ.poll().getPet();
} else {
throw new RuntimeException("err, queue is empty!");
}
}
public Dog pollDog() {
if (!this.isDogQueueEmpty()) {
return (Dog) this.dogQ.poll().getPet();
} else {
throw new RuntimeException("Dog queue is empty!");
}
}
public Cat pollCat() {
if (!this.isCatQueueEmpty()) {
return (Cat) this.catQ.poll().getPet();
} else
throw new RuntimeException("Cat queue is empty!");
}
public boolean isEmpty() {
return this.dogQ.isEmpty() && this.catQ.isEmpty();
}
public boolean isDogQueueEmpty() {
return this.dogQ.isEmpty();
}
public boolean isCatQueueEmpty() {
return this.catQ.isEmpty();
}
}
}
- 转圈打印矩阵
【题目】 给定一个整型矩阵matrix,请按照转圈的方式打印它。
例如: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 打印结果为:1,2,3,4,8,12,16,15,14,13,9,
5,6,7,11, 10
【要求】 额外空间复杂度为O(1)。
- 实现上图所描述的方法打印矩阵边界,然后迭代调用;
- 代码:
public static void spiralOrderPrint(int[][] matrix) {
int tR = 0;
int tC = 0;
int dR = matrix.length - 1;
int dC = matrix[0].length - 1;
while (tR <= dR && tC <= dC) {
printEdge(matrix, tR++, tC++, dR--, dC--);
}
}
public static void printEdge(int[][] m, int tR, int tC, int dR, int dC) {
if (tR == dR) {
for (int i = tC; i <= dC; i++) {
System.out.print(m[tR][i] + " ");
}
} else if (tC == dC) {
for (int i = tR; i <= dR; i++) {
System.out.print(m[i][tC] + " ");
}
} else {
int curC = tC;
int curR = tR;
while (curC != dC) {
System.out.print(m[tR][curC] + " ");
curC++;
}
while (curR != dR) {
System.out.print(m[curR][dC] + " ");
curR++;
}
while (curC != tC) {
System.out.print(m[dR][curC] + " ");
curC--;
}
while (curR != tR) {
System.out.print(m[curR][tC] + " ");
curR--;
}
}
}
- 旋转正方形矩阵
【题目】 给定一个整型正方形矩阵matrix,请把该矩阵调整成顺时针旋转90度的样子。
【要求】 额外空间复杂度为O(1)。
- 实现上图所描述的方法旋转矩阵边界,然后迭代调用;
- 代码:
public static void rotate(int[][] matrix) {
int tR = 0;
int tC = 0;
int dR = matrix.length - 1;
int dC = matrix[0].length - 1;
while (tR < dR) {
rotateEdge(matrix, tR++, tC++, dR--, dC--);
}
}
public static void rotateEdge(int[][] m, int tR, int tC, int dR, int dC) {
int times = dC - tC;
int tmp = 0;
for (int i = 0; i != times; i++) {
tmp = m[tR][tC + i];
m[tR][tC + i] = m[dR - i][tC];
m[dR - i][tC] = m[dR][dC - i];
m[dR][dC - i] = m[tR + i][dC];
m[tR + i][dC] = tmp;
}
}
```
7. 反转单向和双向链表
>
【题目】 分别实现反转单向链表和反转双向链表的函数。
【要求】 如果链表长度为N,时间复杂度要求为O(N),额外空间复杂度要求为O(1)
* 代码:
```java
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static Node reverseList(Node head) {
Node pre = null;
Node next = null;
while (head != null) {
next = head.next;
head.next = pre;
pre = head;
head = next;
}
return pre;
}
public static class DoubleNode {
public int value;
public DoubleNode last;
public DoubleNode next;
public DoubleNode(int data) {
this.value = data;
}
}
public static DoubleNode reverseList(DoubleNode head) {
DoubleNode pre = null;
DoubleNode next = null;
while (head != null) {
next = head.next;
head.next = pre;
head.last = next;
pre = head;
head = next;
}
return pre;
}
- “之”字形打印矩阵
【题目】 给定一个矩阵matrix,按照“之”字形的方式打印这个矩阵,例如: 1 2 3 4 ,5 6 7 8, 9 10 11 12“之”字形打印的结果为:1,2,5,9,6,3,4,7,10,11,8,12
【要求】 额外空间复杂度为O(1)。
- 如上图,定位每条射线两端,通过标志位确定选择射线方向,实现“之”字形打印矩阵;
- 代码:
public static void printMatrixZigZag(int[][] matrix) {
int tR = 0;
int tC = 0;
int dR = 0;
int dC = 0;
int endR = matrix.length - 1;
int endC = matrix[0].length - 1;
boolean fromUp = false;
while (tR != endR + 1) {
printLevel(matrix, tR, tC, dR, dC, fromUp);
tR = tC == endC ? tR + 1 : tR;
tC = tC == endC ? tC : tC + 1;
dC = dR == endR ? dC + 1 : dC;
dR = dR == endR ? dR : dR + 1;
fromUp = !fromUp;
}
System.out.println();
}
public static void printLevel(int[][] m, int tR, int tC, int dR, int dC,
boolean f) {
if (f) {
while (tR != dR + 1) {
System.out.print(m[tR++][tC--] + " ");
}
} else {
while (dR != tR - 1) {
System.out.print(m[dR--][dC++] + " ");
}
}
}
- 在行列都排好序的矩阵中找数
【题目】 给定一个有N*M的整型矩阵matrix和一个整数K,matrix的每一行和每一 列都是排好序的。实现一个函数,判断K是否在matrix中。 例如: 0 1 2 5 ,2 3 4 7 ,4 4 4 8, 5 7 7 9 如果K为7,返回true;如果K为6,返回false。
【要求】 时间复杂度为O(N+M),额外空间复杂度为O(1)。
- 代码:
public static boolean isContains(int[][] matrix, int K) {
int row = 0;
int col = matrix[0].length - 1;
while (row < matrix.length && col > -1) {
if (matrix[row][col] == K) {
return true;
} else if (matrix[row][col] > K) {
col--;
} else {
row++;
}
}
return false;
}
- 打印两个有序链表的公共部分
【题目】 给定两个有序链表的头指针head1和head2,打印两个链表的公共部分。
- 比较两个有序链表的当前值,若不等,较小的链表取下一节点;若相等,则打印当前值,两个链表都取下一节点;
- 代码:
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static void printCommonPart(Node head1, Node head2) {
System.out.print("Common Part: ");
while (head1 != null && head2 != null) {
if (head1.value < head2.value) {
head1 = head1.next;
} else if (head1.value > head2.value) {
head2 = head2.next;
} else {
System.out.print(head1.value + " ");
head1 = head1.next;
head2 = head2.next;
}
}
System.out.println();
}
- 判断一个链表是否为回文结构
【题目】 给定一个链表的头节点head,请判断该链表是否为回文结构。 例如: 1->2->1,返回true。 1->2->2->1,返回true。15->6->15,返回true。 1->2->3,返回false。
进阶: 如果链表长度为N,时间复杂度达到O(N),额外空间复杂度达到O(1)。
- 方案一:申请一个栈,遍历链表并将各结点的值压入栈,再次遍历链表,与栈中pop出的值比较;
- 方案二:设置一个快指针和一个慢指针,同时遍历链表,当快指针到链表末尾时,慢指针到链表中间,申请一个栈,通过慢指针将链表后半部分压入栈中;然后比较链表前半部分与栈中的值;
- 方案三(进阶):设置一个快指针和一个慢指针,同时遍历链表,当快指针到链表末尾时,慢指针到链表中间,将链表的后半部分的方向反过来,链表中间值的next指向null,然后分别从链表头与链表为开始比较,若出现不相等情况,返回false;若未出现,则将链表后半部分恢复原始状态并返回true。
- 代码:
// need n extra space
public static boolean isPalindrome1(Node head) {
Stack<Node> stack = new Stack<Node>();
Node cur = head;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
while (head != null) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need n/2 extra space
public static boolean isPalindrome2(Node head) {
if (head == null || head.next == null) {
return true;
}
Node right = head.next;
Node cur = head;
while (cur.next != null && cur.next.next != null) {
right = right.next;
cur = cur.next.next;
}
Stack<Node> stack = new Stack<Node>();
while (right != null) {
stack.push(right);
right = right.next;
}
while (!stack.isEmpty()) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need O(1) extra space
public static boolean isPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node n1 = head;
Node n2 = head;
while (n2.next != null && n2.next.next != null) { // find mid node
n1 = n1.next; // n1 -> mid
n2 = n2.next.next; // n2 -> end
}
n2 = n1.next; // n2 -> right part first node
n1.next = null; // mid.next -> null
Node n3 = null;
while (n2 != null) { // right part convert
n3 = n2.next; // n3 -> save next node
n2.next = n1; // next of right node convert
n1 = n2; // n1 move
n2 = n3; // n2 move
}
n3 = n1; // n3 -> save last node
n2 = head;// n2 -> left first node
boolean res = true;
while (n1 != null && n2 != null) { // check palindrome
if (n1.value != n2.value) {
res = false;
break;
}
n1 = n1.next; // left to mid
n2 = n2.next; // right to mid
}
n1 = n3.next;
n3.next = null;
while (n1 != null) { // recover list
n2 = n1.next;
n1.next = n3;
n3 = n1;
n1 = n2;
}
return res;
}
- 将单向链表按某值划分成左边小、中间相等、右边大的形式
【题目】 给定一个单向链表的头节点head,节点的值类型是整型,再给定一个整 数pivot。实现一个调整链表的函数,将链表调整为左部分都是值小于 pivot的节点,中间部分都是值等于pivot的节点,右部分都是值大于 pivot的节点。除这个要求外,对调整后的节点顺序没有更多的要求。 例如:链表9->0->4->5->1,pivot=3。 调整后链表可以是1->0->4->9->5,也可以是0->1->9->5->4。总之,满 足左部分都是小于3的节点,中间部分都是等于3的节点(本例中这个部分为空),右部分都是大于3的节点即可。对某部分内部的节点顺序不做 要求。
进阶: 在原问题的要求之上再增加如下两个要求。在左、中、右三个部分的内部也做顺序要求,要求每部分里的节点从左 到右的顺序与原链表中节点的先后次序一致。 例如:链表9->0->4->5->1,pivot=3。调整后的链表是0->1->9->4->5。 在满足原问题要求的同时,左部分节点从左到
右为0、1。在原链表中也 是先出现0,后出现1;中间部分在本例中为空,不再讨论;右部分节点 从左到右为9、4、5。在原链表中也是先出现9,然后出现4,最后出现5。如果链表长度为N,时间复杂度请达到O(N),额外空间复杂度请达到O(1)。
- 方案一:遍历链表,记录链表长度,然后申请一个同长度的数组,将链表各结点装入数组,然后采用荷兰国旗的方法;
- 代码:
public static Node listPartition1(Node head, int pivot) {
if (head == null) {
return head;
}
Node cur = head;
int i = 0;
while (cur != null) {
i++;
cur = cur.next;
}
Node[] nodeArr = new Node[i];
i = 0;
cur = head;
for (i = 0; i != nodeArr.length; i++) {
nodeArr[i] = cur;
cur = cur.next;
}
arrPartition(nodeArr, pivot);
for (i = 1; i != nodeArr.length; i++) {
nodeArr[i - 1].next = nodeArr[i];
}
nodeArr[i - 1].next = null;
return nodeArr[0];
}
public static void arrPartition(Node[] nodeArr, int pivot) {
int small = -1;
int big = nodeArr.length;
int index = 0;
while (index != big) {
if (nodeArr[index].value < pivot) {
swap(nodeArr, ++small, index++);
} else if (nodeArr[index].value == pivot) {
index++;
} else {
swap(nodeArr, --big, index);
}
}
}
public static void swap(Node[] nodeArr, int a, int b) {
Node tmp = nodeArr[a];
nodeArr[a] = nodeArr[b];
nodeArr[b] = tmp;
}
- 方案二(进阶):遍历链表,分别将>、=、<部分的节点按照顺序做成三条新的小链表,遍历结束后,再将三条小链表接起来;
- 代码:
public static Node listPartition2(Node head, int pivot) {
Node sH = null; // small head
Node sT = null; // small tail
Node eH = null; // equal head
Node eT = null; // equal tail
Node bH = null; // big head
Node bT = null; // big tail
Node next = null; // save next node
// every node distributed to three lists
while (head != null) {
next = head.next;
head.next = null;
if (head.value < pivot) {
if (sH == null) {
sH = head;
sT = head;
} else {
sT.next = head;
sT = head;
}
} else if (head.value == pivot) {
if (eH == null) {
eH = head;
eT = head;
} else {
eT.next = head;
eT = head;
}
} else {
if (bH == null) {
bH = head;
bT = head;
} else {
bT.next = head;
bT = head;
}
}
head = next;
}
// small and equal reconnect
if (sT != null) {
sT.next = eH;
eT = eT == null ? sT : eT;
}
// all reconnect
if (eT != null) {
eT.next = bH;
}
return sH != null ? sH : eH != null ? eH : bH;
}
- 复制含有随机指针节点的链表
【题目】 一种特殊的链表节点类描述如下:
public class Node { public int value; public Node next; public
Node rand;
public Node(int data) { this.value = data; }
}
Node类中的value是节点值,next指针和正常单链表中next指针的意义一 样,都指向下一个节点,rand指针是Node类中新增的指针,这个指针可 能指向链表中的任意一个节点,也可能指向null。 给定一个由Node节点类型组成的无环单链表的头节点head,请实现一个 函数完成这个链表中所有结构的复制,并返回复制的新链表的头节点。
进阶:不使用额外的数据结构,只用有限几个变量,且在时间复杂度为 O(N)内完成原问题要实现的函数。
- 方案一:使用HashMap,将链表遍历并以结点为key,用该结点的value创建一个新的Node结点为value放入HashMap;然后依据原链表将HashMap中的各结点的相互关系复制;
- 方案二(进阶):将链表中各结点的复制结点放在原结点后,然后复制出复制结点的rand指向关系,最后将原链表结点与复制链表的节点分开;
- 代码:
public static Node copyListWithRand1(Node head) {
HashMap<Node, Node> map = new HashMap<Node, Node>();
Node cur = head;
while (cur != null) {
map.put(cur, new Node(cur.value));
cur = cur.next;
}
cur = head;
while (cur != null) {
map.get(cur).next = map.get(cur.next);
map.get(cur).rand = map.get(cur.rand);
cur = cur.next;
}
return map.get(head);
}
public static Node copyListWithRand2(Node head) {
if (head == null) {
return null;
}
Node cur = head;
Node next = null;
// copy node and link to every node
while (cur != null) {
next = cur.next;
cur.next = new Node(cur.value);
cur.next.next = next;
cur = next;
}
cur = head;
Node curCopy = null;
// set copy node rand
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
curCopy.rand = cur.rand != null ? cur.rand.next : null;
cur = next;
}
Node res = head.next;
cur = head;
// split
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
cur.next = next;
curCopy.next = next != null ? next.next : null;
cur = next;
}
return res;
}
- 两个单链表相交的一系列问题
【题目】 在本题中,单链表可能有环,也可能无环。给定两个单链表的头节点 head1和head2,这两个链表可能相交,也可能不相交。请实现一个函数, 如果两个链表相交,请返回相交的第一个节点;如果不相交,返回null 即可。 要求:如果链表1的长度为N,链表2的长度为M,时间复杂度请达到 O(N+M),额外空间复杂度请达到O(1)。
- 根据Loop1与Loop2来进行分类判断;
- 代码:
public static Node getIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node loop1 = getLoopNode(head1);
Node loop2 = getLoopNode(head2);
if (loop1 == null && loop2 == null) {
return noLoop(head1, head2);
}
if (loop1 != null && loop2 != null) {
return bothLoop(head1, loop1, head2, loop2);
}
return null;
}
public static Node getLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
Node n1 = head.next; // n1 -> slow
Node n2 = head.next.next; // n2 -> fast
while (n1 != n2) {
if (n2.next == null || n2.next.next == null) {
return null;
}
n2 = n2.next.next;
n1 = n1.next;
}
n2 = head; // n2 -> walk again from head
while (n1 != n2) {
n1 = n1.next;
n2 = n2.next;
}
return n1;
}
public static Node noLoop(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node cur1 = head1;
Node cur2 = head2;
int n = 0;
while (cur1.next != null) {
n++;
cur1 = cur1.next;
}
while (cur2.next != null) {
n--;
cur2 = cur2.next;
}
if (cur1 != cur2) {
return null;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
Node cur1 = null;
Node cur2 = null;
if (loop1 == loop2) {
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
} else {
cur1 = loop1.next;
while (cur1 != loop1) {
if (cur1 == loop2) {
return loop1;
}
cur1 = cur1.next;
}
return null;
}
}