给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, …, N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES,否则输出NO。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
题意:
这个题就是给出栈的大小,然后按照1,2,3…n 顺序将数字入栈,允许按照任何方式出栈,来判断给出的出栈序列是否合法。
#include<stdlib.h>
#include<iostream>
#include<string>
#include<stack>
#include<vector>
using namespace std;
const int maxn = 1010;
int num[maxn];
int main() {
int n, m, k;
cin >> n >> m >> k;
while (k--) {
stack<int>num_stack;
for (int i = 1; i <= m; i++) cin >> num[i];
int current_num = 1, position = 1, flag = 1;
while (position <= m) {
if (current_num <= m && num[position] == current_num) current_num++, position++;
else if (!num_stack.empty() && num_stack.top() == num[position]) position++, num_stack.pop();
else if (current_num <= m && num_stack.size() < n-1) num_stack.push(current_num++);
else {
flag = 0; break;
}
}
if (flag) cout << "YES\n";
else cout << "NO\n";
}
}