前言
此篇博客包含了很多常用的与数组维度处理有关函数,方便查阅
numpy
numpy中与维度处理有关函数个人感觉掌握下面这五个就足够用了
np.concatenate - 维度合并
这个函数个人感觉是非常好用的,可以将多个数组按照某一维度进行合并。如下示例
如上所示,可以对数组的axis维进行拼接,保证数组其他维度完全一样,否则会报错,多个数组也可以。
np.tile - 数组重复堆叠
利用np.tile可以对数组进行拓展,如下示例
可以对数组某一维度进行堆叠,设第二个参数为args = (arg1,arg2,arg3,…,argn)
返回数组out = np.tile(arr,args)
out.shape[-1] = argn * arr.shape[-1]
out.shape[-2] = argn-1 * arr.shape[-2]
…
out.shape[-n] = arg1 * arr.shape[-n]
若i超出shape数组维度,则arr.shape[i]按照1来计算,若n小于shape数组维度,则out其余维度和arr相同,再次示例如下。
np.transpose - 轴变换
reshape - 形状变换
其他函数 - 方便阅读代码
np.expand_dims - 增加维度 - np.expand_dims(arr,dim) 在第dim增加维度
np.squeeze - 删除维度 - np.squeeze(arr) 去掉shape=1的所有维度,也可以是数字或元组的形式
pytorch
以下函数input均为张量
torch.cat(inputs,dimension=0) - 拼接
同np.concatente 用法
torch.squeeze(inout,dim=None,out=None) - 删除1的维度
同np.squeeze用法
torch.unsqueeze(input,dim,out=None) - 增加维度(在dim维)
tensor.view(-1, 8) - 改变形状
用法同reshape
torch.transpose - 转置
transpose(input,1,2) 将input第1维和第二维交换
torch.permute - 转置
用法同np.transpose