pytorch&numpy中与维度处理有关部分函数

前言

此篇博客包含了很多常用的与数组维度处理有关函数,方便查阅

numpy

numpy中与维度处理有关函数个人感觉掌握下面这五个就足够用了

np.concatenate - 维度合并

这个函数个人感觉是非常好用的,可以将多个数组按照某一维度进行合并。如下示例
在这里插入图片描述
如上所示,可以对数组的axis维进行拼接,保证数组其他维度完全一样,否则会报错,多个数组也可以。

np.tile - 数组重复堆叠

利用np.tile可以对数组进行拓展,如下示例
在这里插入图片描述
可以对数组某一维度进行堆叠,设第二个参数为args = (arg1,arg2,arg3,…,argn)
返回数组out = np.tile(arr,args)
out.shape[-1] = argn * arr.shape[-1]
out.shape[-2] = argn-1 * arr.shape[-2]

out.shape[-n] = arg1 * arr.shape[-n]
若i超出shape数组维度,则arr.shape[i]按照1来计算,若n小于shape数组维度,则out其余维度和arr相同,再次示例如下。
在这里插入图片描述

np.transpose - 轴变换

在这里插入图片描述

reshape - 形状变换

在这里插入图片描述

其他函数 - 方便阅读代码

np.expand_dims - 增加维度 - np.expand_dims(arr,dim) 在第dim增加维度
np.squeeze - 删除维度 - np.squeeze(arr) 去掉shape=1的所有维度,也可以是数字或元组的形式
在这里插入图片描述

pytorch

以下函数input均为张量

torch.cat(inputs,dimension=0) - 拼接

同np.concatente 用法

torch.squeeze(inout,dim=None,out=None) - 删除1的维度

同np.squeeze用法

torch.unsqueeze(input,dim,out=None) - 增加维度(在dim维)

tensor.view(-1, 8) - 改变形状

用法同reshape

torch.transpose - 转置

transpose(input,1,2) 将input第1维和第二维交换

torch.permute - 转置

用法同np.transpose

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值