Java1.8的HashMap源码解读[篇1]

1.HashMap源码解读

学过数据结构的都知道, Hash表是一种动态查找表, 理想情况下不经过任何比较就能找到对应的元素(理想很美好,现实很残酷)。一个具有良好Hash函数的Hash表, 查找速度是很快的。HashMap的底层就是基于Hash表实现的。下图就是一个Hash表结构。


[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q7ev5VVI-1589093870697)(D:\笔记图片集\watermark,g_7,image_d2F0ZXIvYmFpa2U4MA==,xp_5,yp_5)]


当然HashMap的Hash表不是这么简单。在Java1.8,HashMap的Hash表是数组+链表,达到一定的阈值就会变成数组+红黑树。

1.1HashMap内部的常量

    //常量
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 默认初始化容量

    static final int MAXIMUM_CAPACITY = 1 << 30; //最大容量(最大表长)

    static final float DEFAULT_LOAD_FACTOR = 0.75f; //默认的装载因子

    static final int TREEIFY_THRESHOLD = 8; //阈值

    static final int UNTREEIFY_THRESHOLD = 6;//非红黑树的阈值

    static final int MIN_TREEIFY_CAPACITY = 64;//树的最小容量

为什么负载因子默认是0.75?按照官方给出的解释是,当负载因子为0.75时候,Entry单链表的长度几乎不可能超过8(到达8的概率是0.00000006),作用就是让Entry单链表的长度尽量小,让HashMap的查询效率尽可能高。


由于当HashMap的大小(即size)大于初始容量(capacity)时候,HashMap就会扩大一倍,由于很多时候并不需要扩大这么多,所以当我们知道我们的数据的大小的时候,就可以在HashMap初始化的时候指定容量(数组大小)。
需要注意的是,我们指定的容量必须是2的幂次方,即使我们传入的容量不是2的幂次方,源码中也会将容量转成2的幂次方,比如我们传入的是5,最终的容量是8。

  //将一个cap 转化为2的指数的算法
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

为什么容量一定要是2的幂次方?因为HashMap是数组+单链表的结构,我们希望元素的存放的更均匀,最理想的状态是每个Entry中只存放一个元素,这样在查询的时候效率最高。那怎么才能均匀的存放呢?我们首先想到的是取模运算 哈希地址%容量大小,SUN的大师们的想法和我们的也一样,只不过他们使用位运算来实现这个运算(位运算效率高),为了使位运算和取模运算结果一样,即hash & (capacity - 1) == hash % capacity,容量(Capacity)的大小就必须为2的幂次方。


对于当capacity为2指数时,hash & (capacity - 1) == hash % capacity的解释

因为c=a%b等价于a=k*b+c

当b为2的指数时(以8为例)

b=8

b的二进制00001000

k*b 就是1前面几位: xxxx1000 , x为0或1

所以余数c 就是1后面几位:00000xxx, x为0或1。

1.2.成员变量

    transient Node<K,V>[] table;//内部的Hash表

    transient Set<Map.Entry<K,V>> entrySet;// 键值对的集合

    transient int size;//HashMap大小, 即已存储键值对的个数

    transient int modCount;//修改次数的统计

    int threshold; //阈值————hash表扩容的衡量   =loadFactor*表容量

    final float loadFactor;//装载因子

1.3. 构造方法

构造方法没有构造表(造表是在扩容函数中造的), 基本上就是设置变量threshold、loadFactor, 以便于扩容机制,进行扩容(或构造表)。

    //构造方法①
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }
    //构造方法②
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    //构造方法③
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // 无参的构造方法默认装载因子为0.75f
    }
    //构造方法④
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

1.4. put方法

 /*
      压入键值对方法
      内部封装了putVal方法
    */
    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;

        //如果表头为空则, 则通过传入的键值对, new一个头结点。
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //如果头不为空
        else {
            Node<K,V> e; K k;
            //与第一个节点进行比较, 如果该结点的键与传入的key相等, 则将p赋值给e
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //如果不相等, 则按照是基于树还是链表,分别进行判断

            else if (p instanceof TreeNode)//如果是树根据树的情况下
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //对于链表进行遍历, 直到找找到 键与键的哈希码相等的节点, 或者遍历到结尾。
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }

            //如果e不为空, 说明有需要覆盖的节点
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;//返回旧的value
            }
        }

        //每插入一个新结点, modCount就会加一
        ++modCount;

        //元素个数与阈值进行比较, 判断是否启动扩容机制。
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);//LinkedhashMap的重写使用
        return null;// 返回一个空值
    }

从上面的代码可以看出, put键值对时, 对键的判重的机制是由

p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k)))条件来确定(即先判断hash值是否相等然后在比较key)。


其中hash是由以下函数得到

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

由此看来,要修改判重机制我们可以重写key类的hashCode()方法和equals()方法。

1.5.get方法

 /*
      获取对应key的value值方法。
      内部调用了 getNode方法。
      如果 getNode方法返回为空, 则该方法返回为空
      否则返回获取到的Node e的value值
    */
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    /*
      获取节点的方法。
      参数:键的hashCode 和键
      总体过程就是:
      ①先判断hash表不空和表的容量不为0,并且通过 (n - 1) & hash获取key在表中的hash地址,该地址的第一个元素不为空。 如果满足条件继续判断。 否则返回null
      ②通过first.hash == hash && ((k = first.key) == key || (key != null && key.equals(k)))等条件将第一个节点的key与我们传入的k是否相等。 如果相等返回第一个节点
      ③判断下一个节点(即第二个节点)不为空, 则继续。否则返回null
      ④如果是基于树的则在树中寻找,
       如果不是基于树的则在链表中循环比较,直到找到相等的key或者遍历到结尾。  

    */
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

1.6. resize()方法, 扩容方法

JDK1.7中,resize时,index取得时,全部采用重新hash的方式进行了。JDK1.8对这个进行了改善。

以前扩容时确定新的hash地址index时要重新通过e.hash&(newCap-1)(即对newCap取余)获得, 而1.8却不一样。

它先根据e.hash&oldCap判断将这当前这个链上的元素分为两类(这里只指数组+链表的情况)。

  • 一类结果为0。这类在新表的hash地址不变

    oldCap=8为例:

    其二进制00001000, newCap=16二进制00010000

    e.hash&oldCap==0则e.hash的二进制形式是xxxx0xxx,x为0或1。

    e.hash对于oldCap和newCap的余数都是00000xxx

  • 另一类结果为oldCap。这类在新表的hash地址为旧表hash地址+oldCap

    oldCap=8为例:

    其二进制00001000, newCap=16二进制00010000

    e.hash&oldCap==oldCap则e.hash的二进制形式是xxxx1xxx,x为0或1。

    e.hash对于oldCap的余数都是00000xxx

    对于newCap的余数是00001xxx, 就等于 00001000+00000xxx(即旧hash地址+oldCap)。

 /*
      重置大小
    */
    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        //如果表为空则旧容量为0, 否则就是表的长度。
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;//初始化容量
        int newCap, newThr = 0;

        //算出新表的容量
        if (oldCap > 0) {// 该判断针对的是已经调用过扩容方法的。
            
            //如果表的容量大于等于最大值, 那就不用扩容了, 直接返回旧表
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //新表的容量变为
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold ,阈值也变为两倍
        }
        else if (oldThr > 0) // initial capacity was placed in threshold。 构造方法传入的初始化容量放置在threshold中。  该方法针对的是构造时代带有初始容量参数的。
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults。   该判断主要针对的是构造时,无初始化容量参数的。
            newCap = DEFAULT_INITIAL_CAPACITY;
        }

        //算出阈值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})

        //完成新旧表的更换
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {//这种情况 , 表示 hash < oldCap。 所以它的在新表的哈希地址是不变的   —————— 哈希表的哈希函数是: hash&[cap-1],  其中hash=hash(key)   
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {//  
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;// 
                        }
                    }
                }
            }
        }
        return newTab;
    }

1.7. containKey()方法

该方法是通过getNode获取对应key的节点, 判断节点是否存在来判断是否包含对应的key值

public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
}

1.8. containValue() 方法

由代码可知查找一个HashMap是否包含某个value值是遍历整个hash表, 所以查找速度很慢

    /*
      查找是否包含传入的value值。
      使用两层for循环遍历一整个表, 所以找value时很慢。
    */
    public boolean containsValue(Object value) {
        Node<K,V>[] tab; V v;
        if ((tab = table) != null && size > 0) {
            for (int i = 0; i < tab.length; ++i) {
                for (Node<K,V> e = tab[i]; e != null; e = e.next) {
                    if ((v = e.value) == value ||
                        (value != null && value.equals(v)))
                        return true;
                }
            }
        }
        return false;
    }

1.9.remove()方法

找到所在hash地址然后再找key所对应的节点进行删除。

    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

1.10. keySet()、values()、entrySet() 等返回集合的方法

    /*********返回集合的这几种方法, 内部new一个新的集合,但是这几个集合并没有存值,而是添加了一些对hash表进行处理的方法************/
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }
    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator() {
            return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super K> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                //循环遍历hash表
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new Values();
            values = vs;
        }
        return vs;
    }

    final class Values extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<V> iterator()     { return new ValueIterator(); }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super V> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                //循环遍历hash表
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }

    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new EntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            Node<K,V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount; 
                //循环遍历hash表
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K,V> e = tab[i]; e != null; e = e.next)
                        action.accept(e);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    }

参考写的很不错, 可以看一下参考

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值