穷举法与分治法求解最大值与最小值的复杂度比较举例

本文探讨了穷举法和分治法在寻找数组最大值和最小值时的效率。通过示例代码展示了分治法在最大值和最小值查找中的应用,同时对比了两种方法的比较计数。实验结果显示,分治法在复杂度上优于穷举法,特别是在大数据量下更具优势。
摘要由CSDN通过智能技术生成

穷举法与分治法求解最大值与最小值的复杂度比较举例

对于程序员来说算法设计尤其重要,我们的直接决定了程序的质量,程序的运行的速度,程序的可执行性。
一件常识的事情就是,大多数人,在第一次接触编程,往往喜欢使用穷举法去解决编程问题,很多稍微有编程天赋的甚至无师自通,但是穷举法其实在算法大家庭中只是即为普通的一员,它对于很多问题不能快速的得到结果,甚至对于一些问题,时间开销太大,得不出结果。
所以对于一个爱好编程的人来说学习其他的编程思路是一件必不可少的事,这里我们就在最大值和最小值的求解上,举例穷举法和分治法的解决思路。

#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
int count_max,count_min;
void create_array(int a[] ,int length){

    srand((int)time(0));
    for(int i=0;i<length;i++)
        a[i]=rand()% 200 + 1;


}

void input_array(int a[],int length){

	for(int i=0;i<length;i++){
		cout<<a[i]<<" ";
	}
}
int divide_and_conquer_max(int a[],int low,int high)
{
	int left_max,right_max;
	
	if(low==high)return a[low];
	else{
		int mid=(high+low)/2;
       left_max=divide_and_conquer_max(a,low,mid);
       right_max=divide_and_conquer_max(a,mid+1,high);
	 
	}
	if(left_max>right_max) {count_max++;return left_max;}
	  
	 else return right_max;
  
}

int divide_and_conquer_min(int a[],int low,int high)
{
	int left_min,right_min;
	
	if(low==high)return a[low];
	else{
		int mid=(high+low)/2;
       left_min=divide_and_conquer_min(a,low,mid);
       right_min=divide_and_conquer_min(a,mid+1,high);
	}
	if(left_min<right_min) {count_min++;return left_min;}
	 else return right_min;
   cout<<right_min;

}

int sum_count_sort(int a[],int length){
	int min=a[0],max=a[0],cmp=0;
	for (int i=1;i<length;i++){
	cmp++;
	if(a[i]>max){max=a[i];}
     else cmp++;
     if(a[i]<min){min=a[i];}
	}
return cmp;


}

int main(){
cout<<"test successful"<<endl;
int a[50];
create_array(a,50);
input_array(a,50);
int max=divide_and_conquer_max(a,0,49);

int min=divide_and_conquer_min(a,0,49);

cout<<"\nthe max of array is "<<max<<"\n";


cout<<"\nthe min of array is "<<min<<"\n";

 
 cout<<" \nthe algorithm of compare's count is "<<count_min+count_max;
 cout<<" \nthe exhaustio_algorithm of compare's count is "<<sum_count_sort(a,49);
 cout<<"\n";
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值