2024. 考试的最大困扰度
一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 ‘T’ 表示)或者 false (用 ‘F’ 表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。
给你一个字符串 answerKey ,其中 answerKey[i] 是第 i 个问题的正确结果。除此以外,还给你一个整数 k ,表示你能进行以下操作的最多次数:
每次操作中,将问题的正确答案改为 'T' 或者 'F' (也就是将 answerKey[i] 改为 'T' 或者 'F' )。
请你返回在不超过 k 次操作的情况下,最大 连续 ‘T’ 或者 ‘F’ 的数目。
示例 1:
输入:answerKey = “TTFF”, k = 2
输出:4
解释:我们可以将两个 ‘F’ 都变为 ‘T’ ,得到 answerKey = “TTTT” 。
总共有四个连续的 ‘T’ 。
示例 2:
输入:answerKey = “TFFT”, k = 1
输出:3
解释:我们可以将最前面的 ‘T’ 换成 ‘F’ ,得到 answerKey = “FFFT” 。
或者,我们可以将第二个 ‘T’ 换成 ‘F’ ,得到 answerKey = “TFFF” 。
两种情况下,都有三个连续的 ‘F’ 。
示例 3:
输入:answerKey = “TTFTTFTT”, k = 1
输出:5
解释:我们可以将第一个 ‘F’ 换成 ‘T’ ,得到 answerKey = “TTTTTFTT” 。
或者我们可以将第二个 ‘F’ 换成 ‘T’ ,得到 answerKey = “TTFTTTTT” 。
两种情况下,都有五个连续的 ‘T’ 。
这题虽然我也是用滑动窗口做的,但是过于复杂,自己写代码,都觉得很费劲,解题代码如下:
int maxConsecutiveAnswers(char * answerKey, int k){
int n=0;
int sum=0;
int max=0;
int i=0;
k=k+1;
int r[k];
for(i=0;i<k;i++){
r[i]=0;
}
int num=0;
int knum=0;
i=0;
int j;
while(answerKey[i]!='\0'){
if(answerKey[i]=='F'){
if(knum<k-1){
r[knum]=num+1;
max=num+1+max;
sum=num+1+sum;
}
else{
if(knum==k-1){
max=num+max;
r[knum]=num+1;
sum=max;
}
if(knum>k-1){
sum=sum+num+1-r[knum%k];
if(sum>max){
max=sum;
}
r[knum%k]=num+1;
}
}
num=0;
knum++;
}
else{
num++;
}
i++;
}
if(answerKey[i-1]=='T'){
if(knum<=k-1){
max=max+num;
}
else{
sum=sum+num+1-r[knum%k];
if(sum>max){
max=sum;
}
}
}
num=0;
knum=0;
for(i=0;i<k;i++){
r[i]=0;
}
i=0;
int max1=0;
sum=0;
while(answerKey[i]!='\0'){
if(answerKey[i]=='T'){
if(knum<k-1){
r[knum]=num+1;
max1=num+1+max1;
sum=num+1+sum;
}
else{
if(knum==k-1){
max1=num+max1;
r[knum]=num+1;
sum=max1;
}
if(knum>k-1){
sum=sum+num+1-r[knum%k];
if(sum>max1){
max1=sum;
}
r[knum%k]=num+1;
}
}
num=0;
knum++;
}
else{
num++;
}
i++;
}
if(answerKey[i-1]=='F'){
if(knum<=k-1){
max1=max1+num;
}
else{
sum=sum+num+1-r[knum%k];
if(sum>max1){
max1=sum;
}
}
}
if(max1>max){
return max1;
}
else{
return max;
}
}