2024. 考试的最大困扰度-滑动窗口

2024. 考试的最大困扰度

一位老师正在出一场由 n 道判断题构成的考试,每道题的答案为 true (用 ‘T’ 表示)或者 false (用 ‘F’ 表示)。老师想增加学生对自己做出答案的不确定性,方法是 最大化 有 连续相同 结果的题数。(也就是连续出现 true 或者连续出现 false)。

给你一个字符串 answerKey ,其中 answerKey[i] 是第 i 个问题的正确结果。除此以外,还给你一个整数 k ,表示你能进行以下操作的最多次数:

每次操作中,将问题的正确答案改为 'T' 或者 'F' (也就是将 answerKey[i] 改为 'T' 或者 'F' )。

请你返回在不超过 k 次操作的情况下,最大 连续 ‘T’ 或者 ‘F’ 的数目。

示例 1:

输入:answerKey = “TTFF”, k = 2
输出:4
解释:我们可以将两个 ‘F’ 都变为 ‘T’ ,得到 answerKey = “TTTT” 。
总共有四个连续的 ‘T’ 。

示例 2:

输入:answerKey = “TFFT”, k = 1
输出:3
解释:我们可以将最前面的 ‘T’ 换成 ‘F’ ,得到 answerKey = “FFFT” 。
或者,我们可以将第二个 ‘T’ 换成 ‘F’ ,得到 answerKey = “TFFF” 。
两种情况下,都有三个连续的 ‘F’ 。

示例 3:

输入:answerKey = “TTFTTFTT”, k = 1
输出:5
解释:我们可以将第一个 ‘F’ 换成 ‘T’ ,得到 answerKey = “TTTTTFTT” 。
或者我们可以将第二个 ‘F’ 换成 ‘T’ ,得到 answerKey = “TTFTTTTT” 。
两种情况下,都有五个连续的 ‘T’ 。

这题虽然我也是用滑动窗口做的,但是过于复杂,自己写代码,都觉得很费劲,解题代码如下:

int maxConsecutiveAnswers(char * answerKey, int k){
    int n=0;
    int sum=0;
    int max=0;

    int i=0;
    k=k+1;
    int r[k];
    for(i=0;i<k;i++){
        r[i]=0;
    }
    int num=0;
    int knum=0;
    i=0;
   int j;
  
  while(answerKey[i]!='\0'){
     
      if(answerKey[i]=='F'){
          if(knum<k-1){
              r[knum]=num+1;
                 max=num+1+max;
                 sum=num+1+sum;
          }
          else{
              if(knum==k-1){
                    max=num+max;
                     r[knum]=num+1;
                     sum=max;
                  
              }
              if(knum>k-1){
                 
           
                        sum=sum+num+1-r[knum%k];
                        if(sum>max){
                            max=sum;
                        }
                    
                       r[knum%k]=num+1;

              }
          }
       


          num=0;
          knum++;

         
      }
      else{
          num++;
      }
      i++;

            
  }
 
if(answerKey[i-1]=='T'){
    if(knum<=k-1){
        max=max+num;
       
    }
    else{

   
      sum=sum+num+1-r[knum%k];
                if(sum>max){
                            max=sum;
                        }
    }
  }

num=0;
knum=0;
for(i=0;i<k;i++){
        r[i]=0;
    }
i=0;
int max1=0;
sum=0;
  while(answerKey[i]!='\0'){
      if(answerKey[i]=='T'){
          if(knum<k-1){
              r[knum]=num+1;
                 max1=num+1+max1;
                  sum=num+1+sum;
          }
          else{
              if(knum==k-1){
                    max1=num+max1;
                     r[knum]=num+1;
                     sum=max1;
                     
              }
              if(knum>k-1){
                  
                   
                        sum=sum+num+1-r[knum%k];
                   
                    if(sum>max1){
                        max1=sum;
                    }
                       r[knum%k]=num+1;

              }
          }
          num=0;
          knum++;  
      }
      else{
          num++;
      }
      i++;

            
  }
  if(answerKey[i-1]=='F'){
    if(knum<=k-1){
        max1=max1+num;
       
    }
    else{
      sum=sum+num+1-r[knum%k];
                if(sum>max1){
                            max1=sum;
                        }
    }
  }

if(max1>max){
    return max1;
}

else{
  return max;
}

  



}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值