2426. 满足不等式的数对数目-二进制树算法解决和暴力解法
给你两个下标从 0 开始的整数数组 nums1 和 nums2 ,两个数组的大小都为 n ,同时给你一个整数 diff ,统计满足以下条件的 数对 (i, j) :
0 <= i < j <= n - 1 且
nums1[i] - nums1[j] <= nums2[i] - nums2[j] + diff.
请你返回满足条件的 数对数目 。
示例 1:
输入:nums1 = [3,2,5], nums2 = [2,2,1], diff = 1
输出:3
解释:
总共有 3 个满足条件的数对:
- i = 0, j = 1:3 - 2 <= 2 - 2 + 1 。因为 i < j 且 1 <= 1 ,这个数对满足条件。
- i = 0, j = 2:3 - 5 <= 2 - 1 + 1 。因为 i < j 且 -2 <= 2 ,这个数对满足条件。
- i = 1, j = 2:2 - 5 <= 2 - 1 + 1 。因为 i < j 且 -3 <= 2 ,这个数对满足条件。
所以,我们返回 3 。
示例 2:
输入:nums1 = [3,-1], nums2 = [-2,2], diff = -1
输出:0
解释:
没有满足条件的任何数对,所以我们返回 0 。
这题用了一个高阶算法-二进制数,也是博主刚学的,感兴趣的可以学习一下:
void insert(int *Btree,int val){
int index=1;
int a=65536;
int sum=0;
for(int i=0;i<17;i++){
sum=sum+(val&a);
if(val&a){
index=index*2+1;
}
else{
index=index*2;
}
Btree[index]++;
a=a>>1;
}
}
long long count(int *Btree,int val){
int index=1;
long long re=0;
int a=65536;
for(int i=0;i<17;i++){
// printf("%d ",index);
if(val&a){
// printf("||%d ",index*2);
re=re+Btree[index*2];
index=index*2+1;
}
else{
index=index*2;
}
a=a>>1;
}
re=re+Btree[index];
return re;
}
long long numberOfPairs(int* nums1, int nums1Size, int* nums2, int nums2Size, int diff){
int aid_arr[nums1Size];
int *Btree=(int *)malloc(sizeof(int )*65536*4);
for(int i=0;i<65536;i++){
Btree[i]=0;
}
for(int i=0;i<nums1Size;i++){
aid_arr[i]=nums1[i]-nums2[i]+32768+20001;
}
long long re=0;
for(int i=0;i<nums1Size;i++){
long long count_n=count(Btree,aid_arr[i]+diff);
insert(Btree,aid_arr[i]);
re=re+count_n;
}
return re;
}
下面则是暴力解法的代码,时间复杂度不能通过,但是解题过程还是可行的。
long long numberOfPairs(int* nums1, int nums1Size, int* nums2, int nums2Size, int diff){
int aid_arr[nums1Size];
for(int i=0;i<nums1Size;i++){
aid_arr[i]=nums1[i]-nums2[i];
}
long long re=0;
for(int i=1;i<nums1Size;i++){
for(int j=0;j<i;j++){
if(aid_arr[i]+diff>=aid_arr[j]){
re++;
}
}
}
return re;
}