2226. 每个小孩最多能分到多少糖果-二分查找法

2226. 每个小孩最多能分到多少糖果-二分查找法

给你一个 下标从 0 开始 的整数数组 candies 。数组中的每个元素表示大小为 candies[i] 的一堆糖果。你可以将每堆糖果分成任意数量的 子堆 ,但 无法 再将两堆合并到一起。

另给你一个整数 k 。你需要将这些糖果分配给 k 个小孩,使每个小孩分到 相同 数量的糖果。每个小孩可以拿走 至多一堆 糖果,有些糖果可能会不被分配。

返回每个小孩可以拿走的 最大糖果数目 。

示例 1:

输入:candies = [5,8,6], k = 3
输出:5
解释:可以将 candies[1] 分成大小分别为 5 和 3 的两堆,然后把 candies[2] 分成大小分别为 5 和 1 的两堆。现在就有五堆大小分别为 5、5、3、5 和 1 的糖果。可以把 3 堆大小为 5 的糖果分给 3 个小孩。可以证明无法让每个小孩得到超过 5 颗糖果。

示例 2:

输入:candies = [2,5], k = 11
输出:0
解释:总共有 11 个小孩,但只有 7 颗糖果,但如果要分配糖果的话,必须保证每个小孩至少能得到 1 颗糖果。因此,最后每个小孩都没有得到糖果,答案是 0 。

这题还是很不错的一个题目,感兴趣的,可以学习一下:

bool allocate(int* candies, int candiesSize, long long k,int n){
   long long count=0;
   if(n==0){
       return true;
   }
   for(int i=0;i<candiesSize;i++){
      
       count=candies[i]/n+count;
       if(count>=k){
           return true;
       }
     
   }
   return false;

}




int maximumCandies(int* candies, int candiesSize, long long k){
  //  quick(candies,0,candiesSize-1);
    int high=0;
    int low=0;
     for(int i=0;i<candiesSize;i++){
         high=fmax(high,candies[i]);
     }
    while(low<=high){
        int mid=(low+high)/2;
        if(allocate(candies,candiesSize,k,mid)){
            low=mid+1;
        }
        else{
            high=mid-1;
        }
    }
   
    return fmax(low-1,0);


}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值