tensorflow/keras 模型搭建以及第一个epoch速度极慢的问题

在使用GPU版Keras构建深度学习模型时,可能会遇到模型构造和训练初期速度极慢的问题。这通常是由于CUDA和cuDNN版本与显卡驱动不匹配导致的。解决方法是确保CUDA和cuDNN版本与显卡驱动兼容,以及选择合适的TensorFlow和Keras版本。在使用包管理工具时,要明确指定依赖库的版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解决keras在模型搭建部分,以及第一个epoch速度极慢的问题

问题描述

使用GPU版本的keras搭建深度学习模型时,在模型顺序构造部分【从Sequential()到add()】会卡住一段时间;而在模型开始训练时,会在第一个epoch卡住相对很长的时间之后才能开始训练。

问题分析

在搜索引擎上查找,有不少人提出过相关问题,但是没有找到一个较好的解决方案。折腾了一会儿之后,猜测是 tensorflow / keras 版本的问题。经实践,在conda下创建了一个python3.9的环境,并用conda安装相关包后可以流畅运行(tensorflow2.5版本)。在此基础上继续查找资料,最终认为本质上是cuda和cudnn的问题。conda默认安装的cuda和cudnn版本是跟随环境中的python版本,这就造成了它们与显卡驱动的不匹配,然后出现了上述的情况。在测试环境下,3.9的python版本使得conda在安装tensorflow-gpu的情况下选择了新版本的cuda和cudnn库,使得模型能正常构建与训练。
简而言之,这个问题一般是由cuda和cudnn的版本落后于显卡驱动造成的。例如,30系列的显卡,它们只支持cuda11、cudnn8以上的版本,使用旧版本就会出现这样的问题。

解决方案

请根据自身显卡型号和驱动版本,选择合适的cuda和cudnn,然后再此基础上在选择 tensorflow / keras 的版本。尤其在使用conda之类包管理工具时,不要无脑conda install package,确认完依赖库版本之后,再指定版本,进行包管理。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值