1、np.eye()和np.identity()
import numpy as np
# 只创建一个方阵
a = np.identity(3)
# [[1. 0. 0.]
# [0. 1. 0.]
# [0. 0. 1.]]
print(a)
a = np.eye(3)
# [[1. 0. 0.]
# [0. 1. 0.]
# [0. 0. 1.]]
print(a)
a = np.eye(4, k=1)
# [[0. 1. 0. 0.]
# [0. 0. 1. 0.]
# [0. 0. 0. 1.]
# [0. 0. 0. 0.]]
print(a)
a = np.eye(4, k=-1)
# [[0. 0. 0. 0.]
# [1. 0. 0. 0.]
# [0. 1. 0. 0.]
# [0. 0. 1. 0.]]
print(a)
a = np.eye(4, k=-3)
# [[0. 0. 0. 0.]
# [0. 0. 0. 0.]
# [0. 0. 0. 0.]
# [1. 0. 0. 0.]]
print(a)
2、np.ones_like
返回与输入数据的形状和类型 一致的全1数组,通过dtype=np.float
将int类型的数字1变成浮点型1.。
1、代码
x = np.arange(6, dtype=np.float).reshape((2, 3))
# [[0. 1. 2.]
# [3. 4. 5.]]
print(x)
y = np.ones_like(x)
# [[1. 1. 1.]
# [1. 1. 1.]]
print(y)
3、np.power
power(x, y) 函数,返回x 的 y 次方。
1、代码
# 8
print(np.power(2, 3))
4、np.cumsum()
按顺序连加,保留上一次的加法值,请看下面的关于axis=0的三种情况:
a = np.array([[1, 2, 3], [4, 5, 6]])
# [ 1 3 6 10 15 21]
print(np.cumsum(a))
# 垂直方向上进行按行连加,第一次[1 2 3],第二次为[1 2 3]+[4, 5, 6]=[5 7 9]
# [[1 2 3]
# [5 7 9]]
print(np.cumsum(a, axis=0))
# 水平方向上进行按行连加,第一次1,4不动,第二次为(1,4)+(2,5)=(3,9)
# [[ 1 3 6]
# [ 4 9 15]]
print(np.cumsum(a, axis=1))
5、np.cumprod()
按顺序连乘,保留上一次的乘法值。在泰勒公式中,有使用到该函数。
1、代码
# 通过累乘来得到当前的数据
# [ 1 2 6 24 120]
y1 = np.arange(1, 6).cumprod()
print(y1)
print("--------------------")
x = [2]
# [[2], [2]]
print(([x] * 2))
# [2 4]
b = np.array([x] * 2).cumprod()
print(b)
# 其他更一般的情况
a = np.array([[1, 2, 3], [4, 5, 6]])
# [ 1 2 6 24 120 720]
print(np.cumprod(a))
# 垂直方向上进行按行连加,第一次[1 2 3],第二次为[1 2 3]*[4, 5, 6]=[4 10 18]
# [[ 1 2 3]
# [ 4 10 18]]
print(np.cumprod(a, axis=0))
# 水平方向上进行按行连加,第一次1,4不动,第二次为(1,4)*(2,5)=(2,20)
# [[ 1 2 6]
# [ 4 20 120]]
print(np.cumprod(a, axis=1))
6、np.linspace
在指定的间隔内(start, stop),返回固定间隔(等差数组)的数据。
linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
下面代码表示生成数据的三种情况:
1、代码
# 包含stop点
x1 = np.linspace(1, 5, 5)
# 去掉stop点
x2 = np.linspace(1, 5, 5, endpoint=False)
# 省略生成元素的个数,默认会生成50个数据
x3 = np.linspace(1, 5)
# [1. 2. 3. 4. 5.]
print(x1)
# [1. 1.8 2.6 3.4 4.2]
print(x2)
# [1. 1.08163265 1.16326531 1.24489796 1.32653061 1.40816327
# 1.48979592 1.57142857 1.65306122 1.73469388 1.81632653 1.89795918
# 1.97959184 2.06122449 2.14285714 2.2244898 2.30612245 2.3877551
# 2.46938776 2.55102041 2.63265306 2.71428571 2.79591837 2.87755102
# 2.95918367 3.04081633 3.12244898 3.20408163 3.28571429 3.36734694
# 3.44897959 3.53061224 3.6122449 3.69387755 3.7755102 3.85714286
# 3.93877551 4.02040816 4.10204082 4.18367347 4.26530612 4.34693878
# 4.42857143 4.51020408 4.59183673 4.67346939 4.75510204 4.83673469
# 4.91836735 5. ]
print(x3)
7、np.logspace()
创建不同底的等比数列。
1、代码
# 以2为底
a1 = np.logspace(0, 9, 10, base=2)
# 起始值为10^0,终止值为10^9,有10个数的等比数列
a2 = np.logspace(0, 9, 10)
# [ 1. 2. 4. 8. 16. 32. 64. 128. 256. 512.]
print(a1)
# [1.e+00 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 1.e+06 1.e+07 1.e+08 1.e+09]
print(a2)
8、np.diag()
该函数用于生成对角矩阵或者获得矩阵中对角的元素,从而构成一个向量。
1、代码
# (array([[1., 0.],
# [0., 1.]]), array([[3, 0],
# [0, 3]]), array([[2, 0],
# [0, 5]]), array([[2, 1],
# [2, 5]]))
sigma = (np.identity(2), np.diag((3, 3)), np.diag((2, 5)), np.array(((2, 1), (2, 5))))
x1 = np.array([[1, 2], [3, 4]])
x2 = np.diag(x1)
x3 = np.diag((2, 5))
print(sigma)
# 对于已经生成的矩阵,返回对角线上的元素
# [1 4]
print(x2)
# 对于未生成的矩阵,返回一个对角矩阵
# [[2 0]
# [0 5]]
print(x3)
9、np.floor()数据取整操作
对于数值数据的取整操作。
1、代码
# 情况1: 向下取整 1.0
print(np.floor(1.23))
# 情况2:对数据四舍五入(取整数)
c = 1.2
a = int(c + 0.5)
# 情况3和4
n = np.array([-2.7, 2.7, 4.3])
# 向上取整,与四舍五入无关
# [-2. 3. 5.]
print(np.ceil(n))
# 四舍五入取整
# [-3. 3. 4.]
print(np.rint(n))
10、np.log()
对数不同底的三种情况介绍。
1、代码
# 以e为底,输出0.9999999998311266
print(np.log(2.718281828))
# 以2为底,输出1
print(np.log2(2))
# 以10为底,输出1
print(np.log10(10))
11、np.fromstring()
该函数可以从字符串解码出ASCII码或者从字符串中进行解码出数据。
1、代码
# 从字符串解码出ASCII码
s = 'abcdz'
g1 = np.fromstring(s, dtype=np.int8)
# [ 97 98 99 100 122]
print(g1)
# 从字符串中进行解码出数据
g2 = np.fromstring('1 2 3', dtype=int, sep=' ')
# [1 2 3]
print(g2)