- 博客(14)
- 收藏
- 关注
原创 dm_control 翻译: Software and Tasks for Continuous Control
dm_control软件包是一系列Python库和任务套件的集合,旨在为关节体仿真中的强化学习智能体提供支持。MuJoCo封装器方便地绑定了函数和数据结构,以便于使用。PyMJCF和Composer库支持程序化的模型操作和任务创作。Control Suite是一组具有固定和标准化结构的任务,用于作为性能测试的基准。Locomotion框架提供了高级抽象概念和运动任务示例。此外,还包括一组可配置的操纵任务,涉及机器人手臂和可拼接的积木。
2024-02-18 18:21:43 1458 1
原创 论文翻译: Adaptive Mobile Manipulation for Articulated Objects In the Open World
图1:开放世界移动操作系统:我们采用全栈方法来操作关节物体,如真实门、橱柜、抽屉和冰箱等真实物体,这些物体位于开放式非结构化环境中。摘要—在家庭等开放式非结构化环境中部署机器人一直是一个长期存在的研究问题。然而,机器人通常只在封闭的实验室环境中进行研究,以及先前的移动操作工作仅限于拾取-移动-放置,这在该领域可能只是冰山一角。在本文中,我们介绍了开放式移动操作系统,这是一个全栈方法,旨在处理在开放式非结构化环境中操作真实关节对象,如实际门、橱柜、抽屉和冰箱。
2024-01-27 19:21:58 1082
原创 AUTORT 论文翻译: EMBODIED FOUNDATION MODELS FOR LARGE SCALE ORCHESTRATION OF ROBOTIC AGENTS
将语言、视觉以及最近的行为等方面结合的基础模型彻底改变了利用互联网规模的数据来推理有用任务的能力。然而,训练具有实体基础模型的一个关键挑战是缺乏在物理世界中扎根的数据。在本文中,我们提出了AutoRT,这是一个利用现有基础模型扩展操作机器人在完全未见场景中部署的系统,几乎不需要人类监督。AutoRT利用视觉-语言模型(VLMs)进行场景理解和扎根,并进一步利用大型语言模型(LLMs)提出多样化和新颖的指令,供一群机器人执行。
2024-01-27 16:31:18 1112
原创 RT-2论文翻译: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
在广泛的Web规模数据集上预训练的高容量模型为各种下游任务提供了有效且强大的平台:大型语言模型不仅可以实现流畅的文本生成(Anil等,2023;Brohan等,2022;OpenAI,2023),还能实现新兴的问题解决(Cobbe等,2021;Lewkowycz等,2022;Polu等,2022)以及散文(Brown等,2020;OpenAI,2023)和代码(Chen等,2021)的创造性生成,而视觉语言模型则实现了开放词汇的视觉识别(Kirillov等,2023;Minderer等,2022;
2024-01-26 15:23:45 827 1
原创 RT-1论文翻译:ROBOTICS TRANSFORMER FOR REAL-WORLD CONTROL AT SCALE
这项工作的目标是构建和展示一个通用的机器人学习系统,能够吸收大量数据并有效泛化。我们使用来自Everyday Robots的移动操纵器,它具有7个自由度的机械臂、一个两指夹持器和一个移动底座(见图2(d))。为了收集数据并评估我们的方法,我们使用了三个基于厨房的环境:两个真实的办公室厨房和一个模拟这些真实厨房的训练环境。训练环境如图2(a)所示,由部分柜台构成,用于大规模数据收集。
2024-01-25 20:22:52 1456
原创 论文翻译:OK-Robot: What Really Matters in Integrating Open-Knowledge Models for Robotics
图1:OK-Robot是一种开放知识机器人系统,集成了多种在公开可用数据上训练的学习模型,用于在现实环境中拾取和放置物体。利用诸如CLIP、Lang-SAM、AnyGrasp和OWL-ViT等开放知识模型,OK-Robot在10个未见过的、混乱的家庭环境中实现了58.5%的成功率,在更干净、整理过的环境中达到了82.4%。摘要—近年来,在视觉、语言和机器人领域取得了显著的进展。我们现在拥有能够根据语言查询识别物体的视觉模型,能够有效控制移动系统的导航系统,以及能够处理各种物体的抓取模型。
2024-01-25 13:35:12 1506
原创 论文翻译:On Bringing Robots Home
在历史长河中,我们成功地将各种机器整合到我们的家庭中。洗碗机、洗衣机、搅拌机和扫地机器人只是一些最近的例子。然而,这些机器擅长有效地执行单一任务。在家庭中使用“通用机器”——一个可以适应并从我们的需求中学习的家庭助手,同时保持经济实惠——一直是机器人领域长期追求的目标。在这项工作中,我们通过引入Dobb·E,一个价格实惠而多才多艺的通用系统,致力于实现这一目标。Dobb·E能够在用户向它展示如何执行任务的五分钟内学会新任务,这得益于我们用廉价零件和iPhone制作的演示采集工具(“The Stick”)。
2024-01-24 20:49:31 1079
原创 论文翻译: Vision-Language Foundation Models as Effective Robot Imitators
近期视觉语言基础模型的研究进展表明,它们能够理解多模态数据并解决复杂的视觉语言任务,包括机器人操纵。我们寻求一种简单直接的方法,利用现有的视觉语言模型(VLMs)并通过简单的在机器人数据上的微调来使用它们。为此,我们开发了一个简单新颖的视觉语言操纵框架,名为RoboFlamingo,建立在开源VLMs OpenFlamingo之上。
2024-01-17 20:05:51 687
原创 Mobile ALOHA论文翻译:Learning Bimanual Mobile Manipulation with Low-Cost Whole-Body Teleoperation
Mobile ALOHA 斯坦福机器人 论文翻译
2024-01-16 15:03:07 1145 1
原创 ALOHA论文翻译:Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
斯坦福ALOHA、ACT算法
2024-01-16 10:43:30 2545 1
原创 Markdown基础语法
一、标题一个#是一级标题,二个#是二级标题,以此类推。支持六级标题。语法一般在#后跟个空格再写文字。源代码如下:# 这是一级标题## 这是二级标题### 这是三级标题#### 这是四级标题##### 这是五级标题###### 这是六级标题效果如下:这是一级标题这是二级标题这是三级标题这是四级标题这是五级标题这是六级标题二、字体源代码如下:**这是加粗的文字***这是倾斜的文字****这是斜体加粗的文字***~~这是加删除线的文字~~效果如下:这是加粗的文字
2021-10-07 14:04:22 114
原创 知识图谱三元组、实体、类型、属性、关系、域、值的理解
转载:https://www.jianshu.com/p/941dc6d7e760三元组的定义实体(Entity)实体是对客观个体的抽象,一个人、一部电影、一句话都可以看作是一个实体。例如:姚明,李安,我不是潘金莲类型(type)类型是对具有相同特点或属性的实体集合的抽象。举例:中国是一个实体,美国是一个实体,法国是一个实体。这些实体都有首都、人口、面积等共同特征,因此例如像中国、美国...
2019-11-06 15:20:42 57149 7
原创 简单理解MySQL数据库中的Schema
MySQL在MySQL中,CREATE SCHEMA创建了一个数据库,这是因为CREATE SCHEMA是CREATE DATABASE的同义词。 换句话说,你可以使用CREATE SCHEMA或者CREATE DATABASE来创建一个数据库。个人理解:如下图,是在MySQLWorkbench中打开的,可以看到Schemas(这里后缀s)包含了所有创建的Database,所以可以大致认为Sc...
2019-11-06 14:59:05 2088
原创 知识图谱中的本体、知识库理解
链接:https://www.zhihu.com/question/34835422/answer/144387604来源:知乎从抽象层面看,本体最抽象,其次是知识库,最后才是知识图谱。举个例子,如果我们要做图书领域的知识库或者知识图谱,首先要对图书进行分类,这个分类就是本体,比如说,图书分为计算机类和电子类,计算机类有分为网络、人工智能;有了这个分类后,我们就可以把图书都分到每个类别,比如...
2019-11-06 14:18:50 4822
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人