常用的统计分析方法-相似度计算

 

基于欧几里得距离的相似度计算

欧几里得相似度计算是一种基于用户之间直线距离的计算公式。它用来表示三维空间中两个点的真实距离。

d=\sqrt{(x1-x2)^{2}+(y1-y2)^{2})}

两个物品或者用户距离越大,可以看到其相似度越小;距离越小则相似度越大。

第二种:基于余弦角度的相似度计算

如果两个目标较为相似,那么线段所形成的夹角越小。如果两个用户不相近,那么两条射线所形成的夹角越大。可以用夹角的大小反应目标之间的相似性。

两者的区别:欧几里得相似度用以表现不同目标的绝对差异性,从而分析目标之间的相似度与差异情况。而余弦相似度更多是对目标从方向趋势上区分,对特定坐标数字不敏感。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值