基于 SMO 实现的 SVM 二分类器

本文详细介绍了SMO算法的实现过程,包括算法描述、难点解析以及在实际操作中如何选择优化变量。讨论了在迭代过程中可能出现的问题,如选点策略、目标函数下降与满足KKT条件的点数变化,并提出了通过记住最优解的策略来优化模型。
摘要由CSDN通过智能技术生成
SMO 算法描述如下:

输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . , ( x N , y N ) } T = \{(x_1, y_1), (x_2, y_2), ...., (x_N, y_N)\} T={ (x1,y1),(x2,y2),....,(xN,yN)} ,其中 x 为 n 维特征向量,y 为 1 或者 -1,算法精度 $\epsilon $ 。

输出:SVM 目标函数的对偶问题的近似解 α ∗ \alpha^* α

  1. 取初值 α ( 0 ) = 0 , k = 0 \alpha^{(0)} = 0, k = 0 α(0)=0,k=0
  2. 选取优化变量 α 1 ( k ) , α 2 ( k ) \alpha^{(k)}_1, \alpha^{(k)}_2 α1(k),α2(k),解析求解两个变量的最优化问题,得到最优解 α 1 ( k + 1 ) , α 2 ( k + 1 ) \alpha^{(k+1)}_1, \alpha^{(k+1)}_2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值