SMO 算法描述如下:
输入:训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . , ( x N , y N ) } T = \{(x_1, y_1), (x_2, y_2), ...., (x_N, y_N)\} T={ (x1,y1),(x2,y2),....,(xN,yN)} ,其中 x 为 n 维特征向量,y 为 1 或者 -1,算法精度 $\epsilon $ 。
输出:SVM 目标函数的对偶问题的近似解 α ∗ \alpha^* α∗
- 取初值 α ( 0 ) = 0 , k = 0 \alpha^{(0)} = 0, k = 0 α(0)=0,k=0
- 选取优化变量 α 1 ( k ) , α 2 ( k ) \alpha^{(k)}_1, \alpha^{(k)}_2 α1(k),α2(k),解析求解两个变量的最优化问题,得到最优解 α 1 ( k + 1 ) , α 2 ( k + 1 ) \alpha^{(k+1)}_1, \alpha^{(k+1)}_2