大数据之数据的压缩与存储

本文介绍了大数据场景下,Hive的压缩方式如Deflate、Snappy等的优缺点及在ODS、DW、DA层的选择。同时探讨了Hive的数据存储格式,包括行存储与列存储的特点,强调列式存储在分析场景下的优势,如降低IO开销和提高压缩比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

由于大数据需要存储的数据较多,如果直接存储原始数据,将会占用较多的硬盘空间,于是就诞生了存储方式和压缩方式,以一定的算法降低数据占用的空间,并且保证数据不丢失,从而提高空间的利用率。

一、Hive的压缩方式

(一) 概念

(1)Hive底层为MapReduce,所以Hive的压缩实际就是MapReduce的压缩
(2)MapRedece的压缩分为Map端结果文件压缩和Reduce端结果文件压缩

(二) 简介

压缩方式常用的有Deflate,Snappy,ZLib,Gzip和Bzip2,不同的压缩方式效率不同;
(1) 从压缩比来说,Bzip2 > ZLib > Gzip > deflate > Snappy,除了Snappy之外的压缩方式可以保证最小的压缩,但是在运算过程中时间消耗较大;
(2)从压缩性能上来说, Snappy > Deflate > Gzip > Bzip2,其中,Snappy压缩和解压缩速度快,压缩比低。
所以一般在生产环境中,经常会采用snappy压缩,以保证运算效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值