LeetCode-day27-3106. 满足距离约束且字典序最小的字符串

LeetCode-day27-3106. 满足距离约束且字典序最小的字符串

题目描述

给你一个字符串 s 和一个整数 k 。

定义函数 distance(s1, s2) ,用于衡量两个长度为 n 的字符串 s1 和 s2 之间的距离,即:

  • 字符 ‘a’ 到 ‘z’ 按 循环 顺序排列,对于区间 [0, n - 1] 中的 i ,计算所有「 s1[i] 和 s2[i] 之间 最小距离」的

例如,distance(“ab”, “cd”) == 4 ,且 distance(“a”, “z”) ==1 。

你可以对字符串 s 执行 任意次 操作。在每次操作中,可以将 s 中的一个字母 改变任意 其他小写英文字母。

返回一个字符串,表示在执行一些操作后你可以得到的 字典序最小 的字符串 t ,且满足 distance(s, t) <= k 。

示例

示例1:

输入:s = “zbbz”, k = 3
输出:“aaaz”
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 ‘a’ ,s 变为 “abbz” 。
将 s[1] 改为 ‘a’ ,s 变为 “aabz” 。
将 s[2] 改为 ‘a’ ,s 变为 “aaaz” 。
“zbbz” 和 “aaaz” 之间的距离等于 k = 3 。
可以证明 “aaaz” 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 “aaaz” 。

示例2:

输入:s = “xaxcd”, k = 4
输出:“aawcd”
解释:在这个例子中,可以执行以下操作:
将 s[0] 改为 ‘a’ ,s 变为 “aaxcd” 。
将 s[2] 改为 ‘w’ ,s 变为 “aawcd” 。
“xaxcd” 和 “aawcd” 之间的距离等于 k = 4 。
可以证明 “aawcd” 是在任意次操作后能够得到的字典序最小的字符串。
因此,答案是 “aawcd” 。

示例3:

输入:s = “lol”, k = 0
输出:“lol”
解释:在这个例子中,k = 0,更改任何字符都会使得距离大于 0 。
因此,答案是 “lol” 。

思路

贪心策略。

  1. 从左到右遍历 s。
  2. 如果把 s[i] 变成 a 的操作次数 dis≤k,那么就把 s[i] 变成 a,同时 k 减少 dis。
  3. 否则无法变成 a,直接把 s[i] 减少 k,退出循环。

代码

class Solution:
    def getSmallestString(self, s: str, k: int) -> str:
        s = list(s)
        p = []
        for i in range(len(s)):
            p.append(ord(s[i]))

        for i,x in enumerate(p):
            dis = min(x- ord('a'),ord('z') - x + 1)
            if  dis > k:
                s[i] = chr(x-k)
                break
            s[i] = 'a'
            k -= dis
        return  ''.join(s)
  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程员平台上,题目分类和标签设置十分细致和方便,方便程员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值