2025国赛C题保姆级教程思路分析 NIPT 的时点选择与胎儿的异常判定

2025国赛C题保姆级教程思路分析

C题题目:NIPT 的时点选择与胎儿的异常判定

整体难度不大,属于数据分析+决策优化问题,涉及优化决策(最佳检测时点)与相关数据的建模(包括风险最小化和最大化预测准确性)。稳健型题目,想要获奖要注意数据处理(严谨性),在解题的基础上适当创新。

1 总体分析

1.1 问题背景:

NIPT(Non-invasive Prenatal Test,即无创产前检测)是一种通过采集母体血液、检测胎儿的游离DNA 片段、分析胎儿染色体是否存在异常的产前检测技术,目的是通过早期检测确定胎儿的健康状况。根据临床经验,畸型胎儿主要有唐氏综合征、爱德华氏综合征和帕陶氏综合征,这三种体征分别由胎儿21号、18号和13号“染色体游离DNA片段的比例”(简称“染色体浓度”)是否异常决定。 NIPT 的准确性主要由胎儿性染色体(男胎 XY,女胎 XX)浓度判断。通常孕妇的孕期在10周~25周之间可以检测胎儿性染色体浓度,且如果男胎的Y染色体浓度达到或高于 4%、女胎的 X 染色体浓度没有异常,则可认为 NIPT 的结果是基本准确的,否则难以保证结果准确性要求。同时,实际中应尽早发现不健康的胎儿,否则会带来治疗窗口期缩短的风险,早期发现(12周以内)风险较低;中期发现(13-27周)风险高;晚期发现(28周以后)风险极高。

实践表明,男胎Y染色体浓度与孕妇孕周数及其身体质量指数(BMI)紧密相关。通常根据孕妇的BMI 值进行分组(例如:[20,28), [28,32), [32,36), [36,40), 40 以上)分别确定 NIPT 的时点(相对孕期的时间点)。由于每个孕妇的年龄、 BMI、孕情等存在个体差异,对所有孕妇采用简单的经验分组和统一的检测时点进行 NIPT,会对其准确性产生较大影响。 因此,依据 BMI 对孕妇进行合理分组,确定各不同群组的最佳 NIPT时点,可以减少某些孕妇因胎儿不健康而缩短治疗窗口期所带来的潜在风险。

为了研究各类孕妇群体合适的 NIPT 时点,并对检测的准确性进行分析, 附件给出了某地区( 大多为高 BMI) 孕妇的 NIPT 数据。 在实际检测中,经常会出现测序失败(比如:检测时点过早和不确定因素影响等) 的情况。 同时为了增加检测结果的可靠性, 对某些孕妇有多次采血多次检测或一次采血多次检测的情况。试利用附件提供的数据建立数学模型研究如下问题:

1.2 问题设定:

问题 1: 试分析胎儿 Y 染色体浓度与孕妇的孕周数和 BMI 等指标的相关特性,给出相应的关系模型,并检验其显著性。

问题 2: 临床证明, 男胎孕妇的 BMI 是影响胎儿 Y 染色体浓度的最早达标时间( 即浓度达到或超过 4%的最早时间) 的主要因素。 试对男胎孕妇的 BMI 进行合理分组,给出每组的 BMI 区间和最佳 NIPT时点,使得孕妇可能的潜在风险最小, 并分析检测误差对结果的影响。

问题 3: 男胎 Y 染色体浓度达标时间受多种因素(身高、体重、年龄等)的影响, 试综合考虑这些因素、检测误差和胎儿的 Y 染色体浓度达标比例(即浓度达到或超过 4%的比例),根据男胎孕妇的 BMI,给出合理分组以及每组的最佳 NIPT 时点, 使得孕妇潜在风险最小,并分析检测误差对结果的影响。

问题 4: 由于孕妇和女胎都不携带 Y 染色体, 重要的是如何判定女胎是否异常。 试以女胎孕妇的 21号、 18 号和 13 号染色体非整倍体( AB 列) 为判定结果, 综合考虑 X 染色体及上述染色体的 Z 值、 GC含量、 读段数及相关比例、 BMI 等因素, 给出女胎异常的判定方法。

1.3 核心要点:

数据处理要到位:统一孕周为连续周(如“11w+6”→11+6/7),核验BMI与身高体重一致性,标注男/女胎(V或U缺失与否),清洗测序失败/极端质控异常样本(AA、P、M、N、L/O、X/Y/Z 辅助判定)。

分层与重复测量处理:同孕妇多次检测→混合效应或广义可加混合模型(GAMM),用“孕妇ID”作随机效应,避免伪重复。

非线性关系捕捉:优先用样条/GAM刻画Y浓度随孕周单调上升的弯曲轨迹,并允许与BMI张量积平滑(te(GA, BMI))显式建模交互。

技术协变量校正:将读段深度、唯一比对数、比对率、重复率、GC、过滤比例等作为协变量进入模型,显著降低批次/平台造成的系统性偏差。

“达到4%”事件的扩展刻画:在后续问题(2/3)里要引入二阶段模型——(a) 连续模型估计“浓度轨迹”,(b) 事件/生存模型或阈值回归估计最早达标时间,并以风险函数(早/中/晚期权重不同)做最优时点选择。

统计显著性与稳健性:对固定效应/平滑项做Wald/LRT/F检验,配合聚类稳健标准误(按孕妇聚类);对模型选择做交叉验证与敏感性分析(是否纳入技术协变量、是否采用不同平滑自由度)。

可解释性与可视化:偏依赖/轮廓图展示 te(GA,BMI) 的表面;给出BMI分组—达标概率曲线与推荐检测时点带不确定性区间(用于问题2/3)。

1.4建模思路:

Step 0 变量标准化与标注

孕周(GA):把“周+天”解析成连续周;

男/女胎判定:以 V(Y浓度)/U(Y Z值)是否缺失为主规则;

质控过滤:参考 P(总体GC)、X/Y/Z(13/18/21 GC)、AA(过滤比例)、M/N(比对率/重复率),剔除明显测序失败记录(题面指出“经常会出现测序失败”)。

Step 1 描述性与相关性

纵向轨迹:按孕妇绘制 V—GA 轨迹(你给的 A001/A002 就是典型多时点);

相关性:Spearman 与偏相关(控制技术协变量)评估 V 与 GA、BMI 的单因素与联合关系。

Step 2 建模主线(问题1为核心,问题2/3铺路)

连续模型:优先 GAMM(logit 变换或 Beta 回归):

极端/零值处理:若早孕周存在极低或0值,可用两部分模型/零膨胀Beta(ZIB):先建“V>0”的Logit,再对正值拟合Beta-GAMM。

辅助对照:用**分位数回归(τ=0.1/0.25)**刻画“保守下界”,更贴近“最晚也能过线”的安全边界。

显著性检验:对 用Wald;对平滑项 用近似F检验;对是否需要交互/随机斜率用 LRT(全/简模型)。

诊断:残差—拟合图、QQ图、杠杆点,外加按孕妇聚类稳健SE。

Step 3 面向决策(为问题2/3做准备)

由连续模型得到条件达标概率;

以BMI分组为决策变量(等宽、等频或基于CART/最小化风险的自适应断点),定义窗口期风险函数(早<12周权重低,中期13–27周权重大,晚期>28周极高),选择各组的最佳检测孕周使期望风险最小。

2 问题分析与解题思路

2.1 问题一思路

目标:分析男胎 Y 染色体浓度(V)与孕周(GA)/BMI 的相关特性,构建关系模型并检验显著性。

  1. 数据筛选与预处理
    样本选择:仅保留男胎(V非空或U非空),并记录“孕妇ID + 检测日期/次数”形成纵向面板。
    孕周连续化:转化“11w+6”
    响应变量变换:由于V∈(0,1),采用 logit 变换更接近正态;如存在 0 或极小值,可做“+ε”微调
    异常与缺失:按质控指标(例如 AA 过高或 P 极端偏离 40–60%)剔除明显失败记录;其余缺失用多重插补或在模型中以缺失指示纳入。
  2. 先验探索与相关性

纵向可视化:对每位孕妇绘制 V–GA 轨迹并叠加局部平滑,直观看到随孕周上升但受BMI抑制的趋势(你的样例 A001 11.9→22.9周,V大致从 2.6% → 6.1%,中间有波动;A002 13.9→23.6周,V在 4–6% 之间波动,提示技术与个体差异存在)。

相关性矩阵:Spearman 相关与偏相关(控制Z)评估 GA/BMI 与 V 的边际/净效应;检视 GA—BMI—技术指标的共线性。

3) 主模型 A:GAMM(广义可加混合模型)

结构:

显著性检验:

平滑项 用近似F检验(或基于平滑自由度的 REML/LRT 比较);

1与 用Waldt(或z)检验;

通过全/简模型 LRT检验:是否需要交互 12、是否需要技术协变量 Z、是否需要随机斜率。

解释与可视化:画 1(GA)展示“孕周效应曲线”;

画te(GA,BMI) 的三维表面/等高线,读出“同一孕周下高BMI → 较低的Y浓度”的区域;

计算在代表性 BMI(如 24/30/35/40)下, V 随 GA 的预测轨迹与95%区间。

4) 备选模型 B:两部分/零膨胀Beta(ZIB)

5) 备选模型 C:分位数回归(含聚类稳健SE)

6) 诊断与稳健性

残差诊断:检视异方差/重尾;必要时对技术协变量做非线性平滑;

分层验证:以时间/批次或BMI区间分层做交叉验证;

灵敏度分析:剔除技术极端样本、改用不同平滑自由度、替换 V 变换方式,观察结论稳定性。

7) 结论产出

统计结论:报告 GA 正相关(非线性上升)与 BMI 负向调制(与 GA 存在显著交互)的证据强度(F/Wald/LRT 的统计量与p值),并量化关键效应大小(例如:BMI 每+5,对同孕周 V 的中位下降幅度;或从 te 表面读取差值)。

建议大家使用matlab/ python进行求解。今晚将会更新具体的解体代码和结果图表,大家敬请期待。

2-4问后续更新

误差与风险要贯穿全题

测序误差传播:将技术协变量保留至所有后续模型;

风险函数:按题面风险分级(早期低、中期高、晚期极高)构造权重,对“过早不达标”与“过晚发现”同时惩罚,最优化各BMI组的检测时点。

女胎异常判定(问题4):以 AB(非整倍体标签)为金标准,综合 T/X/W(X的Z值/浓度)、Q/R/S(13/18/21 Z值)、X/Y/Z(对应GC)、L–O、AA、K 等做多变量判别(如梯度提升或可解释逻辑回归/GAM),并输出可解释的Z值与质控驱动的风险评分。

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方卡片查看哦!

2023五一数学建模b保姆思路代码:快递需求分析。 首先,我们可以采用Python编程语言来解决这个问。我们需要使用一些常用的数据分析库,例如Numpy和Pandas。 代码实现思路如下: 1. 首先,我们需要导入所需的库: import numpy as np import pandas as pd 2. 接下来,读取数据集并进行预处理: data = pd.read_csv('data.csv') # 读取数据集 data['日期'] = pd.to_datetime(data['日期']) # 将日期转换为标准格式 3. 对快递需求进行分析: 3.1 计算每日总需求量: data['总需求量'] = data['订单数量'].groupby([data['日期']]).transform('sum') 3.2 计算每月平均需求量: data['月平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.month]).transform('mean') 3.3 计算每周平均需求量: data['周平均需求量'] = data['总需求量'].groupby([data['日期'].dt.year, data['日期'].dt.week]).transform('mean') 4. 进行需求分析: 4.1 计算每个月的需求波动情况: data['需求波动'] = data['总需求量'] - data['月平均需求量'] 4.2 计算每个周的需求波动情况: data['周需求波动'] = data['总需求量'] - data['周平均需求量'] 5. 可以根据需求波动情况,进行快递员人数的调整以满足不同时间段的需求波动情况。 以上就是解决2023五一数学建模b保姆思路代码的大致思路。当然,具体的代码实现还需要根据目要求和数据集进行进一步的调整和优化。同时,在实际问中,我们还可以利用数据可视化工具如Matplotlib将分析结果以图表的方式展示出来,更直观地展示快递需求的变化趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值