现在企业应用大数据和商业智能有这么几种情况:
大型互联网企业采用hadoop一类的大数据架构——数据仓库——自己研发的报表、OLAP分析等。或者前端选用成熟的商业智能报表和BI分析软件。
传统企业,小型的公司没有那么多的业务分析的需求,大多寻求excel、业务系统的简单报表功能或者专业的报表工具来解决问题;一般中大型企业数据量大时会构建数据仓库,用BI在前端分析展现。当然很多传统企业针对特定业务(比如用户画像、风控分析)采用大数据技术。
虽然,从技术上来讲,传统BI的功能都可以被对应的大数据组件所替代,但大多数企业缺乏大数据业务的驱动,也缺乏相关的高技术人才。
其次,企业数据分析意识范畴内可以利用的数据并没有达到向互联网行业那样的程度,更倾向于基于业务流程的数据管理。当然有的企业的数据量也是大的,很多企业采用SAPHANA,BI的分布式计算都是基于这个问题优化的方案。
总之,BI的那套会将长期存在,毕竟企业对BI方案还是很青睐,大数据的普及和应用也是个漫长的过程。
既然未来BI是个大方向,那做BI,有哪些路线可以发展?
给出4个方向吧,走技术、走管理、走开发、转行
1、走技术方向:(按照技术路线进行划分)
ETL,这块是BI永恒的重点之一,需求也是一直持续,只是相对来说,ETL会比较枯燥。在这一块,掌握一两款顺应潮流的大工具,拥有相应年限的工作经历,行业性要求不太高,可以找到一个不错的岗位。DS、INFA、SSIS这些都是蛮有需求的。
数据仓库,主要指的数据仓库设计,架构设计等,一般来说LEVEL会比较高&#