二分图匹配

二分图匹配

题目链接:luogu P3386

题目

给定一个二分图,结点个数分别为 n n n , m m m,边数为 e e e,求二分图最大匹配数

输入

第一行, n n n , m m m , e e e
第二至 e + 1 e+1 e+1行,每行两个正整数 u u u , v v v,表示 u u u , v v v有一条连边

输出

共一行,二分图最大匹配

样例输入

1 1 1
1 1

样例输出

1

数据范围

n , m ≤ 1000 n,m \leq 1000 n,m1000
1 ≤ u ≤ n 1 \leq u \leq n 1un
1 ≤ v ≤ m 1 \leq v \leq m 1vm
e ≤ n × m e \le n\times m en×m

思路

这道题其实很简单。

我们先建图,连边,边的流量为 1 1 1
在这里插入图片描述

接着,左边的点都连一个源点,右边的点都连一个汇点,流量也都是 1 1 1
在这里插入图片描述

然后我们就发现这道题变成了一道最大流。
在这里我用dinic算法来做。
然后就可以了。

代码

#include<cstring>
#include<cstdio>
#include<queue>
#define ll long long

using namespace std;

struct note {
	ll to, next, op, now;
}e[3000001];
ll n, m, o, x, y, le[10001], k, s, t, ans, dis[10001];
queue<int>q;

bool bfs() {
	while (!q.empty()) q.pop();
	memset(dis, 0x7f, sizeof(dis));
	dis[s] = 0;
	
	q.push(s);
	while (!q.empty()) {
		ll now = q.front();
		q.pop();
		
		for (ll i = le[now]; i; i = e[i].next)
			if (dis[e[i].to] > dis[now] + 1 && e[i].now) {
				dis[e[i].to] = dis[now] + 1;
				if (e[i].to == t) return 1;
				q.push(e[i].to);
			}
	}
	
	return 0;
}

int dfs(ll now, ll an) {
	if (now == t) return an;
	
	ll go = 0;
	for (ll i = le[now]; i; i = e[i].next)
		if (dis[e[i].to] == dis[now] + 1 && e[i].now) {
			ll line_go = dfs(e[i].to, min(e[i].now, an - go));
			if (!line_go) dis[e[i].to] = -1;
			e[i].now -= line_go;
			e[e[i].op].now += line_go;
			
			go += line_go;
			if (go == an) break;
		}
	
	return go;
}

int main() {
	scanf("%lld %lld %lld", &n, &m, &o);//输入
	
	s = n + m + 1;//源点
	t = n + m + 2;//汇点
	
	for (ll i = 1; i <= o; i++) {
		scanf("%lld %lld", &x, &y);//输入
		y += n;
		e[++k] = (note){y, le[x], k + 1, 1}; le[x] = k;//连边
		e[++k] = (note){x, le[y], k - 1, 0}; le[y] = k;
	}
	
	for (ll i = 1; i <= n; i++) {//左边的点全部连源点
		e[++k] = (note){i, le[s], k + 1, 1}; le[s] = k;
		e[++k] = (note){s, le[i], k - 1, 0}; le[i] = k;
	}
	for (int i = n + 1; i <= n + m; i++) {//右边的点全部连汇点
		e[++k] = (note){t, le[i], k + 1, 1}; le[i] = k;
		e[++k] = (note){i, le[t], k - 1, 0}; le[t] = k;
	}
	
	while (bfs())//dinic算法
		ans += dfs(s, 2147483647);
	
	printf("%lld", ans);//输出
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值