玩具装箱

玩 具 装 箱 玩具装箱

题目链接:luogu P3195

题目

P P P 教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。

P P P 教授有编号为 1 ⋯ n 1 \cdots n 1n n n n 件玩具,第 i i i 件玩具经过压缩后的一维长度为 C i C_i Ci

为了方便整理, P P P教授要求:

在一个一维容器中的玩具编号是连续的。

同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物。形式地说,如果将第 i i i 件玩具到第 j j j 个玩具放到一个容器中,那么容器的长度将为 x = j − i + ∑ k = i j C k x=j-i+\sum\limits_{k=i}^{j}C_k x=ji+k=ijCk

制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为 x x x,其制作费用为 ( x − L ) 2 (x-L)^2 (xL)2。其中 L L L 是一个常量。 P P P 教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 L L L。但他希望所有容器的总费用最小。

输入

第一行有两个整数,用一个空格隔开,分别代表 n n n L L L

2 2 2 到 第 ( n + 1 ) (n + 1) (n+1) 行,每行一个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数代表第 i i i 件玩具的长度 C i C_i Ci

输出

输出一行一个整数,代表所有容器的总费用最小是多少。

样例输入

5 4
3
4
2
1
4

样例输出

1

数据范围

对于全部的测试点, 1 ≤ n ≤ 5 × 1 0 4 1 \leq n \leq 5 \times 10^4 1n5×104 1 ≤ L ≤ 1 0 7 1 \leq L \leq 10^7 1L107 1 ≤ C i ≤ 1 0 7 1 \leq C_i \leq 10^7 1Ci107

思路

这道题是一道斜率优化。因为是第一次做这种题目,参考了某大佬的博客,所以博客的推导与做法和大佬的很像。
至于啥是斜率优化的话。。。就是二维单调队列优化吧。(本人觉得,我也不知道,你们可以去看 t a ta ta的博客

首先,根据题意,我们可以得到这个东西:
在这里插入图片描述
我们设 s u m [ i ] sum[i] sum[i]为长度的前缀和,那么根据题意,我们可以得到:
在这里插入图片描述
我们先让 f [ i ] = s u m [ i ] + i f[i] = sum[i] + i f[i]=sum[i]+i,(这一步是为了简化运算),然后算式就变成了这个:
在这里插入图片描述
这时候很明显要枚举 i i i j j j,就会超时,这个时候我们就要用斜率优化了 。

对于每一个 d p [ i ] dp[i] dp[i],它们都都是由一个 j j j推过来的,那我们假设有两个 j j j,一个是 j 1 j_1 j1,另一个是 j 2 j_2 j2。如果选 j 2 j_2 j2的比选 j 1 j_1 j1的优,我们就会得出这个式子:
d p [ j 1 ] + ( f [ i ] − f [ j 1 ] − 1 − L ) 2 ≥ d p [ j 2 ] + ( f [ i ] − f [ i 2 ] − 1 − L ) 2 dp[j_1]+(f[i]−f[j_1]−1−L)^2≥dp[j_2]+(f[i]−f[i_2]−1−L)^2 dp[j1]+(f[i]f[j1]1L)2dp[j2]+(f[i]f[i2]1L)2
然后我们拆开平方,就可以得到这个式子:
d p [ j 1 ] + f [ i ] 2 − 2 f [ i ] ( f [ j 1 ] + 1 + L ) + ( f [ j 1 ] + L + 1 ) 2 ≥ d p [ j 2 ] + f [ i ] 2 − 2 f [ i ] ( f [ j 2 ] + 1 + L ) + ( f [ j 2 ] + L + 1 ) 2 dp[j_1]+f[i]^2-2f[i](f[j_1]+1+L)+(f[j_1]+L+1)^2≥dp[j_2]+f[i]^2-2f[i](f[j_2]+1+L)+(f[j_2]+L+1)^2 dp[j1]+f[i]22f[i](f[j1]+1+L)+(f[j1]+L+1)2dp[j2]+f[i]22f[i](f[j2]+1+L)+(f[j2]+L+1)2
接着,我们化简式子,可以得到这个:
2 f [ i ] ( f [ j 2 ] + 1 + L ) − 2 f [ i ] ( f [ j 1 ] + 1 + L ) ≥ d p [ j 2 ] + ( f [ j 2 ] + 1 + L ) 2 − ( d p [ j 1 ] + ( f [ j 1 ] + 1 + L ) 2 ) 2f[i](f[j_2]+1+L)−2f[i](f[j_1]+1+L)≥dp[j_2]+(f[j_2]+1+L)^2−(dp[j_1]+(f[j_1]+1+L)^2) 2f[i](f[j2]+1+L)2f[i](f[j1]+1+L)dp[j2]+(f[j2]+1+L)2(dp[j1]+(f[j1]+1+L)2)
在化简,然后把 j j j都移到右边, i i i移到左边,就变成了这个:

为了简化运算,我们让 g [ i ] = ( f [ i ] + L + 1 ) 2 g[i]=(f[i]+L+1)^2 g[i]=(f[i]+L+1)2,可以把上面的式子改成这个:

也就是说,如果 j 1 j_1 j1 j 2 j_2 j2满足上面的式子,那么 j 2 j_2 j2就比 j 1 j_1 j1优。

接着,我们就可以用单调队列维护(因为 f [ i ] f[i] f[i]是单调递增的)。我们把决策放进一个单调队列里,如果队首和当前的 i i i 间的斜率 < f [ i ] <f[i] <f[i] ,就把删掉队首。接着,把队列中加入 i i i 后不满足斜率单调上升的后面数全部删掉,最后把 i i i 放进单调队列就可以了。

代码

#include <cstdio>
#define ll long long

using namespace std;

ll n, l, dp[50001], sum[50001], f[50001], g[50001], h, t, p[50001];

double shizi(ll j1, ll j2)
{
    return (double) (dp[j2] + g[j2] - dp[j1] - g[j1]) / (f[j2] - f[j1]);
}

int main()
{
    scanf("%lld %lld", &n, &l);//读入
    for(int i = 1; i <= n; i++)
    {
        scanf("%lld", &sum[i]);//输入
        sum[i] += sum[i - 1];//算出前缀和
        f[i] = sum[i] + i;//求出f
        g[i] = (f[i] + l + 1) * (f[i] + l + 1);//求出g
    }
    g[0] = (l + 1) * (l + 1);//初始化

    for(int i = 1; i <= n; i++)//枚举i
    {
        while(h < t && shizi(p[h], p[h + 1]) <= 2 * f[i]) h++;//对首
        dp[i] = dp[p[h]] + (f[i] - f[p[h]] - l - 1) * (f[i] - f[p[h]] - l - 1);//公式
        while(h < t && shizi(p[t], i) < shizi(p[t - 1], p[t])) t--;//队尾
        p[++t] = i;//在队尾插入
    }

    printf("%lld\n", dp[n]);//输出答案

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值