CCA的小球
题目链接:nowcoder 217043
到牛客看:
题目大意
有 n 个球,每个球有颜色,最多两个球同一个颜色,你要把它们排成一列。
求有多少个方案满足相邻的球颜色都不同。
方案不同当且仅当某个位置两个方案摆在这里的球颜色不同。
思路
我们考虑从同一个颜色最多两个小球下手。
那对于两个同颜色的小球,就有相邻和不相邻两种。
而且我们想到看有多少个是相邻的。
但是恰好又不好搞,我们看至少有多少个相邻。
那就好弄了,先排列弄选哪
i
i
i 个颜色捆在一起,然后就是:
C
t
o
t
i
×
(
n
−
i
)
!
/
2
t
o
t
−
i
C_{tot}^{i}\times(n-i)!/2^{tot-i}
Ctoti×(n−i)!/2tot−i
(
t
o
t
tot
tot 是一共有多少种颜色有两个球,下同)
那我们可以想到用容斥来去重,至少零个减至少一个加至少两个……,以此类推。
那我们可以总结出完整的式子:
a
n
s
=
∑
i
=
0
t
o
t
(
(
−
1
)
i
×
C
t
o
t
i
×
(
n
−
i
)
!
/
2
t
o
t
−
i
)
ans=\sum\limits_{i=0}^{tot}((-1)^i\times C_{tot}^i\times (n-i)!/2^{tot-i})
ans=i=0∑tot((−1)i×Ctoti×(n−i)!/2tot−i)
然后把一些东西预处理一下算这个式子就好了。
代码
#include<cstdio>
#include<algorithm>
#define ll long long
#define mo 1000000007
using namespace std;
int n, a[1000001];
int two;
ll ans, two_times[1000001], inv[1000001], fac[1000001], zf = 1;
ll ksm(ll x, ll y) {//用来算逆元的
ll re = 1;
while (y) {
if (y & 1) re = (re * x) % mo;
x = (x * x) % mo;
y >>= 1;
}
return re;
}
void init() {//预处理
two_times[0] = inv[0] = fac[0] = 1;
for (int i = 1; i <= 1000000; i++) two_times[i] = (two_times[i - 1] * 2) % mo;
for (int i = 1; i <= 1000000; i++) fac[i] = (fac[i - 1] * i) % mo;
inv[1000000] = ksm(fac[1000000], mo - 2);
for (int i = 1000000 - 1; i >= 0; i--) inv[i] = (inv[i + 1] * (i + 1)) % mo;
}
int main() {
init();
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
sort(a + 1, a + n + 1);
for (int i = 2; i <= n; i++)
if (a[i] == a[i - 1]) {
two++;
}
for (int i = 0; i <= two; i++) {//根据式子容斥
ans = (ans + zf * (fac[two] * inv[i] % mo * inv[two - i] % mo * fac[n - i] % mo * ksm(two_times[two - i], mo - 2)) % mo) % mo;
if (ans < 0) ans += mo;
zf = -zf;
}
printf("%lld", ans);
return 0;
}