CCA的小球(组合数学+容斥原理)

https://ac.nowcoder.com/acm/contest/11168/D


给定 n 个小球,每个小球有颜色,要将它们摆成一行 。

两个方案不同,当且仅当存在某个位置,两种方案摆在这个位置的小球颜色不同。
一个方案合法, 当且仅当不存在任意两个位置相邻的小球颜色相同,求合法方案数对 10^9+7 取模后的值 。


首先考虑取反面计算。考虑"两个方案不同,当且仅当存在某个位置,两种方案摆在这个位置的小球颜色不同。"如何计算总方案数。

我们直接没有任何限制的就是fac[n],但是不能有两个位置颜色同的。我们用fac算的时候把B的两个颜色即B1,B2算成了不同的两个方案。实际上一样的。所以对于fac[n]里的所有方案数,B1,B2有fac[2](2X1)的总方案数的重复,所以总方案数就是(cnt表示颜色为2的个数) fac[n]/(2^cnt)

然后总共重复最多5e5.我们考虑容斥。记si为存在两个位置相邻的小球颜色相同。

ans=总数-| s1∪s2∪s3......∪scnt|

也就是减去s1,s2,s3...scnt,

加上s1∩s2,s1∩s3......

 

考虑怎么求只有一对颜色不同的。首先一对有C(m,1)种选法。既然条件是相邻位置,我们把这对颜色同的小球捆绑。那么此时剩下的小球有n-i个,全排列是fac[n-i],那么此时还要考虑其他颜色的满足第一个条件的状态,fac[n-i]/(2^(cnt-1) 【和最开始的处理合法总数一样】

#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<cmath>
#include<map>
#include<unordered_map>
#include<set>
#include<cstdio>
#include<algorithm>
#define debug(a) cout<<#a<<"="<<a<<endl;
using namespace std;
const int maxn=1e6+100;
typedef long long LL;
const LL mod=1e9+7;
inline LL read(){LL x=0,f=1;char ch=getchar();	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;}
LL fac[maxn],inv[maxn],inv1[maxn];
LL a[maxn];
unordered_map<LL,LL>map1;
LL ksm(LL a,LL k){
    LL res=1;
    while(k>0){
        if(k&1) res=res*a%mod;
        k>>=1;
        a=a*a%mod;
    }
    return res%mod;
}
void init(){
    fac[0]=1;
    for(LL i=1;i<maxn-10;i++) fac[i]=fac[i-1]*i%mod;
    inv[0]=1;
    for(LL i=1;i<maxn-10;i++) inv[i]=inv[i-1]*ksm((LL)i,mod-2)%mod;
    inv1[0]=1;
    for(LL i=1;i<maxn-10;i++) inv1[i]=inv1[i-1]*ksm((LL)2,mod-2)%mod;
}
LL C(LL n,LL m){
   return (fac[m]%mod*inv[n]%mod*inv[m-n]%mod)%mod;
}
int main(void)
{
  init();
  LL n;n=read();
  LL cnt=0;
  for(LL i=1;i<=n;i++){
    a[i]=read();
    if(map1.count(a[i])){
        cnt++;
    }
    else map1[a[i]]=1;
  }
  LL ans=(fac[n]%mod*inv1[cnt]+mod)%mod;

  for(LL i=1;i<=cnt;i++){
      if(i&1){
         ans=(ans%mod-C(i,cnt)%mod*fac[n-i]%mod*inv1[cnt-i]%mod+mod)%mod;
      }
      else{
         ans=(ans%mod+C(i,cnt)%mod*fac[n-i]%mod*inv1[cnt-i]%mod+mod)%mod;
      }
      ans=(ans+mod)%mod;
  }
  printf("%lld\n",ans);
return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CCACanonical Correlation Analysis)典型相关分析是一种多元统计分析方法,用于研究两组变量之间的线性关系。其基本思想是将两组变量通过线性变换映射到低维空间,使得两组变量在该空间的相关性最大。具体来说,CCA通过构造Lagrangian等式,利用拉格朗日乘子法求解出两组变量的典型相关变量,即两组变量在低维空间的投影向量,从而得到它们之间的典型相关系数。典型相关系数越大,说明两组变量之间的相关性越强。 在实际应用,CCA可以用于数据降维、特征提取、模式识别等领域。例如,在故障检测,可以利用CCA来分析传感器数据和故障模式之间的关系,从而实现故障检测和诊断。 代码示例: ```python import numpy as np from scipy.linalg import eig # 构造两组变量X和Y X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) Y = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]]) # 计算X和Y的协方差矩阵 Cxx = np.cov(X.T) Cyy = np.cov(Y.T) Cxy = np.cov(X.T, Y.T) # 计算广义特征值和广义特征向量 eigvals, eigvecs = eig(np.dot(np.dot(np.linalg.inv(Cxx), Cxy), np.dot(np.linalg.inv(Cyy), Cxy.T))) # 取前k个最大的广义特征值对应的广义特征向量 k = 2 idx = np.argsort(eigvals)[::-1][:k] Wx = eigvecs[:, idx].real Wy = np.dot(np.dot(np.linalg.inv(Cyy), Cxy.T), Wx).real # 计算典型相关变量 U = np.dot(X, Wx) V = np.dot(Y, Wy) # 计算典型相关系数 R = np.corrcoef(U.T, V.T)[k:, :k] print("典型相关系数:", R) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值