Matrix / 矩形
题目链接:jzoj 3488
题目大意
给你平面的一些线段。
保证这些线段都是水平的或竖直的。
水平的两两线段都不会碰到,竖直的也一样。
问你这些线段组成了多少个矩形。
思路
首先不难想到你可以把线段分成水平的和竖直的。
然后你两两枚举水平的,然后你想,如果有两条竖直的都与两条水平的有相交,那它们就能构成矩形。
那你就要找有多少个竖直的与这两个水平的相交,这些竖直的两两都可以,那如果有
x
x
x 个,贡献就加了
x
(
x
−
1
)
/
2
x(x-1)/2
x(x−1)/2。
那接着不难想到可以暴力找,但是
O
(
n
3
)
O(n^3)
O(n3) 不行。
你发现能不能相交就是一个
0
0
0 或
1
1
1,要两个都是
1
1
1 才行,那不就是“与”操作?
那二进制位运算,不难想到用 bitset 优化。
那就把找竖直的优化了,复杂度变成了
O
(
n
3
32
)
O(\dfrac{n^3}{32})
O(32n3),可以通过。
代码
#include<cstdio>
#include<bitset>
#include<algorithm>
#define ll long long
using namespace std;
int n, x[2001][2], y[2001][2];
int X[2001], Y[2001];
bitset <2001> can[2001], tmp;
ll ans;
bool touch(int xx, int yy) {//判断两条线段是否相交
if (x[xx][0] == x[xx][1]) swap(xx, yy);
if (x[xx][0] <= x[yy][0] && x[yy][1] <= x[xx][1])
if (y[yy][0] <= y[xx][0] && y[xx][1] <= y[yy][1])
return 1;
return 0;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d %d %d %d", &x[i][0], &y[i][0], &x[i][1], &y[i][1]);
if (x[i][0] > x[i][1]) swap(x[i][0], x[i][1]);
if (y[i][0] > y[i][1]) swap(y[i][0], y[i][1]);
if (x[i][0] == x[i][1]) Y[++Y[0]] = i;
else X[++X[0]] = i;
}
for (int i = 1; i <= X[0]; i++)
for (int j = 1; j <= Y[0]; j++)
if (touch(X[i], Y[j]))
can[i][j] = 1;
for (int i = 1; i <= X[0]; i++)//枚举两条横的
for (int j = i + 1; j <= X[0]; j++) {
tmp = can[i] & can[j];//bitset加速匹配
int num = tmp.count();
ans += 1ll * num * (num - 1) / 2;
}
printf("%lld", ans);
return 0;
}