【jzoj 3488】Matrix / 矩形(枚举)(bitset)

168 篇文章 1 订阅
5 篇文章 0 订阅

Matrix / 矩形

题目链接:jzoj 3488

题目大意

给你平面的一些线段。
保证这些线段都是水平的或竖直的。
水平的两两线段都不会碰到,竖直的也一样。
问你这些线段组成了多少个矩形。

思路

首先不难想到你可以把线段分成水平的和竖直的。

然后你两两枚举水平的,然后你想,如果有两条竖直的都与两条水平的有相交,那它们就能构成矩形。
那你就要找有多少个竖直的与这两个水平的相交,这些竖直的两两都可以,那如果有 x x x 个,贡献就加了 x ( x − 1 ) / 2 x(x-1)/2 x(x1)/2

那接着不难想到可以暴力找,但是 O ( n 3 ) O(n^3) O(n3) 不行。
你发现能不能相交就是一个 0 0 0 1 1 1,要两个都是 1 1 1 才行,那不就是“与”操作?
那二进制位运算,不难想到用 bitset 优化。
那就把找竖直的优化了,复杂度变成了 O ( n 3 32 ) O(\dfrac{n^3}{32}) O(32n3),可以通过。

代码

#include<cstdio>
#include<bitset>
#include<algorithm>
#define ll long long

using namespace std;

int n, x[2001][2], y[2001][2];
int X[2001], Y[2001];
bitset <2001> can[2001], tmp;
ll ans;

bool touch(int xx, int yy) {//判断两条线段是否相交
	if (x[xx][0] == x[xx][1]) swap(xx, yy);
	if (x[xx][0] <= x[yy][0] && x[yy][1] <= x[xx][1])
		if (y[yy][0] <= y[xx][0] && y[xx][1] <= y[yy][1])
			return 1;
	return 0;
}

int main() {
	scanf("%d", &n);
	for (int i = 1; i <= n; i++) {
		scanf("%d %d %d %d", &x[i][0], &y[i][0], &x[i][1], &y[i][1]);
		if (x[i][0] > x[i][1]) swap(x[i][0], x[i][1]);
		if (y[i][0] > y[i][1]) swap(y[i][0], y[i][1]);
		if (x[i][0] == x[i][1]) Y[++Y[0]] = i;
			else X[++X[0]] = i; 
	}
	
	for (int i = 1; i <= X[0]; i++)
		for (int j = 1; j <= Y[0]; j++)
			if (touch(X[i], Y[j]))
				can[i][j] = 1;
	
	for (int i = 1; i <= X[0]; i++)//枚举两条横的
		for (int j = i + 1; j <= X[0]; j++) {
			tmp = can[i] & can[j];//bitset加速匹配
			int num = tmp.count();
			ans += 1ll * num * (num - 1) / 2;
		}
	
	printf("%lld", ans);
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值