Ned 的难题
题目大意
给你一个序列,问你其中所有连续子序列的最大公因数的乘积。
思路
考虑最大公因数是个啥,其实就是对于每个质数,它的次数取最小值,然后乘起来。
那你考虑新加了一个数在最右边,那每个点的后缀公因数就会发生变化——不会变大,要么不变要么缩小,而且缩小至少缩小一半。
而且因为是后缀,如果
i
i
i 缩小了,那
i
+
1
i+1
i+1 的一定也缩小的,而且至少缩小的是
i
i
i 缩小的量。
然后你考虑这些缩小的地方,那这个缩小的量假设是
x
x
x,那这些缩小的位置一定都有
x
x
x 这个公约数,那你左右端点任选在这些地方,都是有
x
x
x 这个贡献。
那你就考虑,如果左右端点分别是
i
,
j
i,j
i,j(不难看出我们要枚举的就是这两个,然后每次插进去的数就是
a
j
a_j
aj),那种数就是
(
j
−
i
+
1
)
(
j
−
1
)
2
\frac{(j-i+1)(j-1)}{2}
2(j−i+1)(j−1),然后贡献就是
x
(
j
−
i
+
1
)
(
j
−
i
)
2
x\dfrac{(j-i+1)(j-i)}{2}
x2(j−i+1)(j−i)。
然后记得搞完之后要把这个区间的数都除 x x x,以免重复计算。
然后复杂度是可以过的,因为你每次每个数至少减半,那至多减
log
2
a
i
\log_2a_i
log2ai 次。
然后至于枚举的地方你加个判断如果当前区间
gcd
\gcd
gcd 已经是
1
1
1 那就不会有贡献,由于是后缀后面的都是
1
1
1,就可以直接退出了。
代码
#include<cstdio>
#define ll long long
#define mo 1000000009
using namespace std;
int n, a[50002], gcd;
ll ans;
int GCD(int x, int y) {
if (!y) return x;
return GCD(y, x % y);
}
ll ksm(ll x, ll y) {
ll re = 1;
while (y) {
if (y & 1) re = re * x % mo;
x = x * x % mo;
y >>= 1;
}
return re;
}
int main() {
// freopen("ned.in", "r", stdin);
// freopen("ned.out", "w", stdout);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
ans = 1;
a[++n] = 1;//用来计算最后都还在的数(整个数组的 GCD)
for (int i = 1; i <= n; i++) {
gcd = a[i];
for (int j = i + 1; j <= n; j++) {
int ggcd = GCD(gcd, a[j]);
if (ggcd != gcd) {
int les = gcd / ggcd;
ans = (ans * ksm(les, 1ll * (j - i + 1) * (j - i) / 2)) % mo;//计算这个 les 带来的贡献
for (int k = i; k < j; k++) a[k] /= les;//除掉
gcd = ggcd;
}
if (gcd == 1) break;//是 1 的话后面都是 1,没必要继续
}
}
printf("%lld", ans);
fclose(stdin);
fclose(stdout);
return 0;
}